2011 10th International Symposium on Parallel and Distributed Computing

Solving NP-Complete Problems on the CUDA Architecture
using Genetic Algorithms

Mihai Calin Feier
Technical University of Cluj-
Napoca
mihaif@student.utcluj.ro

Abstract—This paper focuses on solutions to two NP-Complete
problems: k-SAT and the knapsack problem. We propose a
new parallel genetic algorithm strategy on the CUDA
architecture, and perform experiments to compare it with the
sequential versions. We show how these problems can benefit
from the GPU solutions, leading to significant improvements in
speedup while keeping the quality of the solution. The best
performance obtained in terms of speedup is 67 times. The
solution presented in this paper suggests a general strategy for
finding fast and robust solutions to complex problems.

1. Introduction

In the early 1970s, a group of (seemingly) intractable (or
computationally demanding) problems, such as 3-SAT or
sub-graph isomorphism, emerged as a new category in
computational complexity, the NP-Complete problems [2].
Since the formalization of this new concept by Richard
Karp in 1972, a series of problems in many research areas
have been shown to be NP-Complete. All known algorithms
for NP-Complete problems require super-polynomial time,
and it is yet to be proven whether faster algorithms can be
developed. In practice, however, there exist several
techniques employed generally in computational
problems, which can produce substantially faster
algorithms: approximation, randomization, restriction,
parametrization and heuristic approaches.

This paper presents both sequential and parallel
evolutionary algorithms, based on the approximation
technique, for two well-known NP-Complete problems: 3-
SAT and the knapsack problem. The parallel versions of the
algorithms have been implemented on GPU using CUDA
[5].

We aim to show that genetic mechanisms can be
employed to provide good solutions for NP-complete
problems. Also, according to the GPGPU (General-
Purpose computation on Graphics Processing Units)
paradigm, video cards with massive parallelism capabilities,
easily available to virtually anyone nowadays, can be used
to speed up various computationally intensive tasks. Since
NP-Complete problems fit perfectly in this category, we

978-0-7695-4540-0/11 $26.00 © 2011 IEEE
DOI 10.1109/ISPDC.2011.50

Camelia Lemnaru
Technical University of Cluj-Napoca

Camelia.Lemnaru@cs.utcluj.ro

278

Rodica Potolea
Technical University of Cluj-
Napoca
Rodica.Potolea@cs.utcluj.ro

study how CUDA and the GPU -capabilities can be

exploited to deploy fast and effective parallel
implementations for NP-Complete problems.
Other significant parallel genetic algorithm

implementations on CUDA can be found in [3,6,7]. They
deal with the mapping of a parallel island-based genetic
algorithm, with and without migration. They show that this
approach leads to significant improvements over the
sequential implementation, up to a few thousand times
faster running time in the best configuration, without taking
into account the driver and data transfers overhead. This
ensures that the parallel approach to genetic algorithms is a
promising one if the hardware resources are properly used.

II. Theoretical Background

This section reviews the most important theoretical
aspects related to genetic algorithms — basic form,
combination and population techniques — and presents a
short overview of NP-Completeness [4].

A. NP-Complete Problems

The NP-Complete problem set is a subset of NP, the set
of all decision problems whose solutions can be verified in
polynomial time, but for which there is no known efficient
way to locate a solution.

Instances of NP-complete problems are ubiquitous in
everyday life, whether it is the TSP employed to model
transportation systems, or the knapsack problem utilized in
resource allocation matters. Even though these problems are
theoretically intractable, there exist a series of techniques
employed generally in computational problems which can
produce substantially faster algorithms. Approximation
techniques focus on providing an “almost optimal” solution.
Randomization allows for a certain amount of randomness
to achieve a faster running time at the cost of the algorithm
failing with a small probability. Restriction methods impose
certain restrictions on the input and parametrization sets
certain parameters of the input to fix values. Last, but not
least, heuristic algorithms are not proven to be neither fast

IEEE
computer
® psouety

nor to produce a good result in all cases, but they are known
to work reasonably well in most cases.

In this paper we focus on the SAT problem and the
knapsack problem, in a comparison of a sequential
implementation on the CPU versus a parallel
implementation on the GPU.

B. Genetic Algorithms

The concept of a genetic algorithm (from now on
referred to as GA) refers to a heuristic search process that
mimics the process of natural evolution in order to find
approximate solutions for a specified problem. GAs are
contained in the larger class of evolutionary algorithms.
They operate with techniques such as selection, crossover
and mutation (over a number of generations) in order to
generate candidate solutions, called individuals. GAs are
generally employed in complex optimization and search
problems — usually NP.

The islands approach is important for GAs, allowing
several populations to evolve independently; small fractions
from an island’s population can migrate to another island,
systematically. This approach may lead to better results due
to the evolution of (semi)-independent (sub)-populations
that approach the solution from different directions.
However, this comes at the price of higher computation
time, justified by a larger population. The option of having
multiple populations evolving independently may increase
the chances of closing in to the actual solution, even though
some of the subpopulations (i.e. some islands) get stuck at a
local optimum.

III. Selected Problems Specifics

For the sequential version of the GA we have employed
the GALib framework [10]. It is provided with several
genetic algorithm implementations, the most important of
them being the basic single population GA, and an island
based GA. We have used both these approaches in
comparison, and thus the island-based type has proven to
give the best results. For this reason we have chosen this
type of GA for the parallel approach as well.

A. The SAT and Knapsack Problems

The SAT problem is searching for an assignment for the
variables in a boolean expression to satisfy it. The 3-SAT
problem, a version to which all boolean expressions can be
transformed in, provides an easier representation as a 3-
CNF, but with a certain overhead given by the increased
expression size [8]. This conjunctive form has a
straightforward representation and it is easy to represent
and evaluate. In the context of a genetic algorithm, the
common fitness function has an intuitive implementation;
counting the number of true clauses within the statement
gives a correct measure of how close to the true statement

279

we are positioning.

The knapsack problem has a simple representation in
genetic algorithms. Each chromosome is a binary string of
bits, with each value encoding whether object i has been
considered as part of the solution (i belongs to current
knapsack) or not. For the fitness function, the sum of the
values for each object in the solution can be considered and
scaled. There is a discussion on what happens when an
individual that exceeds the maximum admissible weight is
generated. This can be avoided at initialization or in the
mutation process, if no such individuals can be generated,
or by assigning small fitness scores to such individuals.

B. Parallel solutions

For the parallel versions, a CUDA based genetic
algorithm has been implemented from grounds up. The
nature of a genetic algorithm is very well suited for a
massive parallel architecture like this, because each
individual (encoding a candidate solution in the search
space) can be independently computed and analyzed. In
order to make better use of the CUDA architecture, we have
selected the island based implementation for the genetic
algorithm, to isolate the populations within a block and
minimize inter-block communication [11]. This is desirable
for both the algorithm itself, as subsets of individuals
locally search for an optimum, and for the GPU
implementation, as no inter-block synchronization is
required, each island evolving in a separate block. The
mapping on the architecture was done by mapping each
population on a CUDA block, and each genome in a
population on a thread.

It is desired to run the entire algorithm on the GPU in
order to minimize the communication between the GPU and
CPU. This communication is usually slow and will cause
extra delays in the genetic algorithm that are not used for
computation. Unfortunately, in an island-based GA there is
migration to be done after a number of generations have
evolved, and usually this is done after each generation. In
order to do that on the CUDA architecture, where inter-
block synchronization is a problem, this can only be done
using communication with the CPU.

Because of the (possibly) large number and size of the
chromosomes, they are not kept in the cache memory,
which is only 16 KB in our case, or 48 KB in the newer
devices. This also ensures the scalability of the solution for
future developments. The shared memory is used as a fast
user-managed cache memory for the data in the operations
of the genetic algorithm, like sorting or scaling.

As a random number generator that is needed in
generating the initial population and within the GA
operators on the kernel code, we used the CURAND
Library that comes with the NVidia SDK. This library

includes two generators, out of which we used the
Pseudorandom sequence generator.

For the selection step in the parallel implementation we
have chosen tournament selection [1], which can have a
customized behavior by implementing some kind of scaling
of the fitness scores.

IV. Experimental Results

This section presents the experiments we have conducted
for both the sequential and the parallel implementation. We
have studied, through extensive experiments, how certain
implementation decisions affect the efficiency of the
algorithms.

The tests shown for the SAT problem are from the the
DIMACS Benchmark Instances, namely some of those
described in [9], which are satisfiable. These are, as
described, random problems with hard generator, no single
clauses and hard density. Each test is formed of roughly
800 CNF statements of 100 distinct variables. We used 15
different tests, each being run an average of 5 times, and
took the average of those results for each configuration
tested, in order to minimize the effects of randomness and
have a good approximation of how good the algorithm
works.

For the knapsack problem, the tests were 100 different
knapsack instances having the number of objects set to 40,
with weights and values being integers less than 1000.

A. Testing parameters

We have considered the following default configuration
for the experiments: a single point crossover with a
probability of 90%, and the mutation probability of 0.01.
The chromosome representation is a binary string that is
well suited for our experiments. The default mutation
operation is random bit swap, but the fitness function has
been specifically defined for each our specific problem:
counting the number of true clauses within the statement for
SAT and the summation of the values for each object in the
solution for knapsack. By default, a linear scaling of the
fitness scores is applied. Elitism is enabled, but set to one
single individual per each generation in the default setting.
The other parameters, like the population size and number
of islands were varied in order to compare the running time
performance obtained.

B. Parallel version

The tests were run on a computer with a Q6600 quad
core processor running at 2.4 GHz and 2 GB RAM, and the
video card is a NVidia GeForce GTX 260 with 216
processing cores. All tests were performed on the described
SAT and knapsack instances, both on the CPU and the
GPU. The knapsack problem is also interesting because it

280

has a very lightweight fitness function, so it can be
employed to benchmark the GA implementation.

In table 1 we show the comparison between the CPU and
the GPU implementations, ran in the same configurations
and the same test data. The quality of the solutions obtained
by both versions is roughly the same, the only difference
only coming from the random number generators employed
and the elitism implementation.

Table 1 — Time performance of the sequential and parallel versions, with
different GA settings

Islands 1 16 32 128
Pop size | 32 | 128 | 32 | 128 | 32 | 128 | 32 128
SAT problem
Toeg(ms) | 125 | 143 [1255 [1717 | 2548 | 3091 |10240] 12117
Tour(ms) | 267 | 360 [298 | 387 | 317 | 421 | 340 | 1014
Speedup [0.47] 0.39 | 4.21 | 443 | 8.04 | 7.34 [30.12] 11.95
Knapsack problem

Toeyfms) | 17 | 25 [131 | 281 | 255 | 551 | 1008 | 2237
Tpur(ms) | 10 | 17 11 19 12 23 15 65
Speedup | 1.7 | 1.47 [11.9 | 14.8 [21.3 | 23.9 | 67.2 | 344

We compare different configurations of number of
islands and population size. It shows the difference in
running time between the sequential version (T.,) and the
parallel one (T,a), for both problems. One can observe a
good speedup obtained in almost all cases (time including
the data transfers and the synchronization between CPU and
GPU).

It can be observed that the GPU implementation is only
efficient when the CUDA architecture is properly used, i.e.
using enough blocks in order to hide the memory latency by
alternating execution between blocks, thus providing better
parallelism.

In Figure 1, we can observe how the parallel
implementation behaves in terms of speed compared to the
sequential version, for the knapsack problem. We kept the
population count per island fixed at 64 individuals, and
varied the number of islands used.

As shown in Figure 2, the quality of the solution in the
case of the knapsack problem is not affected, in this case
even obtaining better convergence to the solution.

-
e
-
-
-
-
-

(aum)zhio|

60 70 100 110 120 130

30 20
number of islands

Fig. 1 — Time performance for the knapsack problem

100.00%a
97.50%
Run Time
i 95.00%
30 gl
W I
g 02.50% 4
e
Eun s
" 90.00%
m
= 87.50%
a 23 S0 73 100 125 150
generation |—I.na|3_cpu =: 'I:nap_-:uda|

Fig. 2 — Quality of solution for the knapsack problem

V. Conclusions

This paper presents parallel, genetic-based solutions for
two NP-Complete problems: k-SAT and the knapsack
problem. They have been implemented on the GPU, using
CUDA and the GPGPU paradigm.

The results of the extensive experiments performed
validate the idea of generating solutions to NP-Complete
problems with genetic algorithms; we have shown that there
is a feasible solution of running the GAs on the GPU, and
we have comparatively evaluated the results of the
sequential and parallel implementations. In terms of
speedup, our results range between 0.39 and 67.2 factor of
improvement, while improving the performance criteria for
specific parameter settings.

Our current interest in the evolution of our research
considers several directions: (1) identifying settings for the
parameters of the GA on various NP-Complete problems,
and cluster problems by type of generic solution; (2)
defining a set of generic constraints for a GA solution on a
problem so that it could be efficiently implemented on the
GPU; (3) defining a set of best practices for the
implementation of GAs on the GPU.

281

References

[1] T. Blickle, L. Thiele, A mathematical analysis of tournament
selection, Proc. of the Sixth ICGA, Morgan Kaufmann Publishers,
San Francisco, Ca., 1995, pp. 9-16.

[2] Cook, S.A. (1971). "The complexity of theorem proving
procedures". Proceedings, Third Annual ACM Symposium on the
Theory of Computing, ACM, New York. pp. 151-158.
doi:10.1145/800157.805047

[3] S. Debattisti, N. Marlat, L. Mussi, S. Cagnoni, Implementation
of a Simple Genetic Algorithm within the CUDA Architecture,
Universita degli Studi di Parma, Italy

[4] M.R. Garey, D.S. Johnson, Computers and intractability: A
guide to the theory of NP-completeness, W.H.Freemanand
Company, New York, 1979.

[5] Nvidia Corp., Nvidia CUDA Programming Guide, version 3.2,
January 2011

[6] Pospichal, P., Jaros, J., Schwarz, J., Parallel Genetic
Algorithm on the CUDA Architecture, Applications of
Evolutionary Computation, Springer, 2010, pp. 442-451

[7] P. Pospichal, Jo. Schwarz, J. Jaros, Parallel Genetic Algorithm
Solving 0/1 Knapsack Problem Running on the GPU, I16¢th
International Conference on Soft Computing MENDEL 2010, pp.
64-70

[8] E. Rodriguez-Tello, J. Torres-Jimenez, ERA: An Algorithm
for Reducing the Epistasis of SAT Problems, Genetic and
Evolutionary Computation-GECCO 2003, pp. 1283-1294

[9] B. Selman, D.G. Mitchell, H.J. Levesque, Generating
Hard Satisfiability Instances, Artificial Intelligence, Vol.
81, pp. 17-29, 1996

[10] M. Wall, GAlib: A C++ Library of Genetic Algorithm
Components, MIT, August 1996

[11] S. Xiao, W. Feng, Inter-Block GPU Communication via Fast
Barrier Synchronization, Technical Report TR-09-19, Computer
Science, Virginia Tech, 2009

