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Abstract

This paper proposes a backstepping method to resolve the synchronization of discrete-time chaotic systems. The

proposed scheme offers systematic design method for the synchronization of a class of discrete-time hyper-chaotic

systems, which implies much complicated high-order chaotic systems can be used to improve the security in chaos

communications. A well-known chaotic systems: generalized Henon map is considered as illustrative example to

demonstrate the general applicability of backstepping design. Numerical simulations verify the effectiveness of the

approach.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

During the last decades, the problem of the synchronization of chaotic systems has gained the attention of an

increasing number of researchers, especially in the light of its potential application in secure communications. The

synchronization of chaotic systems is based on the drive-response conception: the trajectories of the drive system and

the response system are identical after the transition time notwithstanding starting from different initial conditions.

Many effective methods have already been successfully applied to the problem since Pecora and Carroll’s original

research work [1].

Recently, with the development of nonlinear control theory, backstepping design becomes an effective method to

resolve the synchronization of chaotic systems [2,3,5,6]. Backstepping design represents a powerful and systematic

technique that recursively interlaces the choice of a Lyapunov function with the design of feedback control. A major

advantage is that backstepping can be applied for stabilization of several well-known chaotic or hyper-chaotic circuits

and systems, which can be continuous-time or discrete-time chaotic systems [4]. In this paper the synchronization of

chaotic system via backstepping approach is proposed for a class of discrete-time chaotic dynamical systems.
2. Problem statement

The backstepping strategy is characterized by a step-by-step procedure interlacing, at each step, a coordinate

transformation and the design of a virtual control via a classical Lyapunov technique, with the definition of a tuning

function, obtaining, as a result, at the last step, the true control expression.
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Consider a discrete-time nonlinear system in the strict-feedback form:
xiðk þ 1Þ ¼ xiþ1ðkÞ þ UiðxðkÞÞ; i ¼ 1; . . . ; n� 1;
xnðk þ 1Þ ¼ UnðxðkÞÞ þ b0ðxðkÞÞuðkÞ;

�
ð1Þ
where xðkÞ ¼ ½x1ðkÞ; . . . ; xnðkÞ�T 2 Rn is the state vector, uðkÞ is the control input, UiðxðkÞÞ 2 R and b0ðxðkÞÞ 2 R are
known nonlinear functions. Note that the dependence of Uð	Þ on xðkÞ is to be intended in the sense that Ui depends only

on x1ðkÞ; . . . ; xnðkÞ, i ¼ 1; . . . ; n.
Backstepping design can be applied to strict-feedback and parameteric-strict-feedback form systems. The strategy

starts by considering the variable x2ðkÞ as a virtual control input to stabilize the first equation. When x2ðkÞ has been
designed using control Lyapunov function, it goes on by considering the variable has been designed using control

Lyapunov function. And it goes on by considering the variable x3ðkÞ as the virtual control for the second equation, and
so on. Therefore the design of the actual input uðkÞ is systematically achieved in n steps. Note that the synchronization
of chaotic systems is the same as a tracking problem, which controls the response system to track the drive system. So

the controller u based on the backstepping design can be used to synchronize the drive-response system.
3. Synchronization of generalized Henon map

In order to show how backstepping design works, the discrete-time generalized hyper-chaotic Henon map is pre-

sented for synchronization via backstepping design.

Consider the discrete-time generalized hyper-chaotic Henon map
y1ðk þ 1Þ ¼ �by3ðkÞ þ uðkÞ;
y2ðk þ 1Þ ¼ by3ðkÞ þ y1ðkÞ;
y3ðk þ 1Þ ¼ 1þ y2ðkÞ � ay23ðkÞ;

8<
: ð2Þ

y1dðk þ 1Þ ¼ �by3dðkÞ;
y2dðk þ 1Þ ¼ by3dðkÞ þ y1dðkÞ;
y3dðk þ 1Þ ¼ 1þ y2dðkÞ � ay23dðkÞ;

8<
: ð3Þ
where uðkÞ is the control input and when a ¼ 1:07, b ¼ 0:3, the uncontrolled generalized Henon map displays a chaotic
attractor when uðkÞ ¼ 0.
The control goal is to find uðkÞ so that the state vector yiðkÞ of the generalized Henon system (2) track the state vector

yidðkÞ of the system (3), i.e. limt!1 kyi � yidk ¼ 0.
Subtracting Eq. (3) from Eq. (2), we get the error dynamics as follows:
e1ðk þ 1Þ ¼ �be3ðkÞ þ uðkÞ;
e2ðk þ 1Þ ¼ be3ðkÞ þ e1ðkÞ;
e3ðk þ 1Þ ¼ e2ðkÞ � ay23ðkÞ þ ay23dðkÞ;

8<
: ð4Þ
where eiðkÞ ¼ yiðkÞ � yidðkÞ, i ¼ 1; 2; 3, is the synchronization error vector. Then the aim of synchronization is to design
uðkÞ so that the system (4) is stabilized to the origin. According to backstepping design, the following steps must be

done:

Step 1. Let z1ðkÞ ¼ e3ðkÞ. From (4) we have
z1ðk þ 1Þ ¼ e2ðkÞ � ay23ðkÞ þ ay23dðkÞ; ð5Þ
then, we use the error state e2 as the virtual control in (5) and introduce the error variable z2ðkÞ ¼ e2ðkÞ � a1ðkÞ, where
a1ðkÞ is a tuning function to be designed later. Let us choose the Lyapunov function as V1ðkÞ ¼ jz1ðkÞj, then the
derivative of V1ðkÞ:
DV1ðkÞ ¼ V1ðk þ 1Þ � V1ðkÞ ¼ z2ðkÞ
�� þ a1ðkÞ � ay23ðkÞ þ ay23dðkÞ

��� jz1ðkÞj: ð6Þ
We choose
a1ðkÞ ¼ c1z1ðkÞ þ ay23ðkÞ � ay23dðkÞ; ð7Þ
where c1 is a design constant to be chosen later, we obtain
DV1ðkÞ ¼ jc1z1ðkÞ þ z2ðkÞj � jz1ðkÞj6 ðjc1j � 1Þjz1ðkÞj þ jz2ðkÞj ð8Þ
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and (5) becomes
Fig. 1

(b) e2 ¼
z1ðk þ 1Þ ¼ c1z1ðkÞ þ z2ðkÞ: ð9Þ
Step 2. From (4), the error variable z2ðkÞ is
z2ðk þ 1Þ ¼ be3ðkÞ þ e1ðkÞ � c1z1ðk þ 1Þ þ ay23ðk þ 1Þ � ay23dðk þ 1Þ; ð10Þ
when we introduce the error variable z3ðkÞ ¼ e1ðkÞ � a2ðkÞ, (10) becomes
z2ðk þ 1Þ ¼ be3ðkÞ þ z3ðkÞ þ a2ðkÞ � c1z1ðk þ 1Þ þ ay23ðk þ 1Þ � ay23dðk þ 1Þ: ð11Þ
We choose
a2ðkÞ ¼ c1z1ðkÞ þ c2z2ðkÞ � be3ðkÞ þ c1z1ðk þ 1Þ � ay23ðk þ 1Þ þ ay23dðk þ 1Þ ð12Þ
and (11) becomes
z2ðk þ 1Þ ¼ c1z1ðkÞ þ c2z2ðkÞ þ z3ðkÞ; ð13Þ
where c2 is a design constant to be chosen later. Choose the Lyapunov function as V2ðkÞ ¼ V1ðkÞ þ d1jz2ðkÞj, where we
take the positive constant d1 > 1, then the derivative of V2ðkÞ:
DV2ðkÞ ¼ DV1ðkÞ þ d1jz2ðk þ 1Þj � d1jz2ðkÞj6 ½ðd1 þ 1Þjc1j � 1�jz1ðkÞj þ ðd1jc2j þ 1� d1Þjz2ðkÞj þ d1jz3ðkÞj: ð14Þ
Step 3. By iterating the previous steps, the error variable z3ðkÞ is

z3ðk þ 1Þ ¼ e1ðk þ 1Þ � a2ðk þ 1Þ ¼ �be3ðkÞ þ uðkÞ � c1z1ðkÞ þ c2z2ðkÞ þ wðkÞ; ð15Þ
where wðkÞ ¼ �be3ðk þ 1Þ þ c1z1ðk þ 2Þ � ay23ðk þ 2Þ þ ay23dðk þ 2Þ.
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. Dynamics of synchronization errors for two generalized Henon systems (drive system and response system): (a) e1 ¼ y1 � y1d ,
y2 � y2d and (c) e3 ¼ y3 � y3d .
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At this step, we can determine the control uðkÞ as

uðkÞ ¼ be3ðkÞ þ c3z3ðkÞ þ c1z1ðk þ 1Þ � c2z2ðk þ 1Þ � wðkÞ: ð16Þ
So we have
z3ðk þ 1Þ ¼ c3z3ðkÞ: ð17Þ
The third Lyapunov function is chosen as follows:
V3ðkÞ ¼ V1ðkÞ þ V2ðkÞ þ d2jz3ðkÞj;
where d2 is a positive constant and d2 > d1 > 1, then the derivative of V3ðkÞ:
DV3ðkÞ ¼ DV1ðkÞ þ DV2ðkÞ þ d2jz3ðk þ 1Þj � d2jz3ðkÞj6 ½ðd1 þ 2Þjc1j � 2�jz1ðkÞj þ ðd1jc2j þ 2� d1Þjz2ðkÞj
þ ðd2jc3ðkÞj þ d1 � d2Þjz3ðkÞj: ð18Þ
In order to make the DV3ðkÞ negative definite, we can choose c1, c2, c3 such that jc1j < 2
d1þ2
, jc2j < d1�2

d1
, jc3j < d2�d1

d2
,

where d2 > d1 > 1.
Based on Lyapunov stability theory, the error system (4) is globally stable about the origin. Therefore, the system (2)

is synchronized with the system (1) via backstepping design.
4. Simulation studies

In this section, numerical simulations are given to verify the method proposed. In these numerical simulations, the

fourth-order Runge-kutta method is used to solve generalized hyper-chaotic Henon map system, with k as 0.001. The
parameters are selected as follows a ¼ 1:07, b ¼ 0:3, with initial values y1ð0Þ ¼ �0:25, y2ð0Þ ¼ 0:3, y3ð0Þ ¼ �0:75;
y1dð0Þ ¼ 0:2, y2dð0Þ ¼ 0:5, y3dð0Þ ¼ 0:7 and we choose the value of c1, c2, c3, d1, d2 as c1 ¼ 0, c2 ¼ 0, c3 ¼ 0, d1 ¼ 4,
d2 ¼ 5. The simulation results are illustrated in Fig. 1. Fig. 1(a) shows e1 ¼ y1 � y1d , Fig. 1(b) shows e2 ¼ y2 � y2d and
Fig. 1(c) shows e3 ¼ y3 � y3d . From the figures, we can see that the synchronization error will converge to zero finally
and two generalized Henon map systems from different initial values are indeed achieving chaos synchronization.
5. Conclusion

Backstepping design represents a powerful and systematic technique that recursively interlaces the choice of a

Lyapunov function with the design of feedback control. In this paper, based on the backstepping scheme, a method is

proposed to synchronize a class of discrete-time hyper-chaotic systems, such as generalized Henon map system, which

has much complicated high-order chaotic systems can be used to improve the security in chaos communications. The

simulation studies show the effectiveness of the method.
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