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Abstract We propose a framework for reducing demand-supply imbalances in
the grid, by jointly controlling both the supply-side electric power regulation
together with the demand-side energy consumption by residential and commercial
consumers demand response. We focus on performance improvements that arise
from the complementary dynamics: regulation allows for frequent control updates
but suffers from slower dynamics; demand response has faster dynamics but does
not allow as frequent control updates. We propose a multirate model predictive
control (MPC) approach for coordinating the two services, and we refer to this
coordinator as an aggregator. Multirate MPC captures the varying dynamics and
update rates, and nonlinearities due to saturation and ramp rate limits, and a
total variation constraint limits the switching of the demand response signal. Our
approach can operate with both direct reference or indirect market-price based
imbalance signal. Numerical examples are presented to show the efficacy of this
joint control approach.
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1 Introduction

In this chapter, we explore the idea of reducing demand-supply imbalances in
the grid, by jointly controlling both the supply-side electric power regulation
together with the demand-side energy consumption by residential and commercial
consumers [15, 16, 20]. Currently, the main instrument for regulating the supply
demand imbalance is a set of supply-side generation reserves, known as ancillary
services, that operate on various scales of time and frequency. The control of
energy consumption by residential and commercial customers is known as demand
response and has become a key idea in the Smart Grid vision.

Here, we focus specifically on the potential performance improvements that
arise from the complementary nature of two sets of dynamics: regulation and fast
demand response. Regulation is an ancillary service that operates on the second-
to-minute timescale, and is traded in units of Mega Watts [19, 22-24]; while fast
demand response refers to the kind of rapid demand cutbacks that can be achieved
“within the flick of a switch”, e.g. from turning off a home appliance, such as an
airconditioner or dryer or light [15, 16,20]. The complementary dynamics we wish
to explore in this chapter are the following: regulation allows for frequent control
updates but suffers from slower dynamics of large generation equipment; demand
response has faster dynamics but does not allow as frequent control updates, due to
potential wear and tear on appliances.

We propose multirate model predictive control (MPC) as an effective com-
putational framework for coordinating regulation and demand response and for
exploring the space of different design scenarios [3,4,7,10,18,21,25]. The multirate
MPC approach captures the varying dynamics and update rates, as well as the
nonlinearities due to saturation and ramp rate limits, and we use a total variation
constraint to limit the switching of the demand response signal. The multirate MPC
approach results in a quadratic program (QP) that must be solved at each time
step [2,4, 5,10, 13] or a more complex optimization problem, e.g. when nonconvex
costs are considered. We call this multirate MPC-based coordinator or controller an
aggregator, because it combines and coordinates the two services into an effective
joint ancillary service.

In addition, we show that our approach has the flexibility to be implemented
in the two most likely deployment scenarios. In the first, a direct demand-supply
imbalance reference tracking signal is available. In the second, an indirect market
price-based tracking signal is available [1, 6, 9, 19, 22-25]. This market-based
tracking approach is related to recent so-called economic MPC [8].

There are some practical applications, which would not have the resources to
solve a QP at each time step. Therefore, we also present a much simpler heuristic
controller, which delivers reasonably good performance in some operating regimes.

Numerical examples are presented to show the efficacy of this joint control
approach. Specifically, it is shown that, under certain conditions, fast demand
response can significantly enhance the quality of traditional supply-side regulation,
to achieve better overall performance, in terms of minimizing demand-supply
imbalance.
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This chapter is a slightly expanded version of [12]; new material includes the
derivation of the price-based MPC, which was only sketched briefly in the original
paper, along with a numerical example to demonstrate its efficacy.

Notation: ||x||, denotes the p-norm of x for p > 1. The saturation function with
level @ > 0 and the Kronecker delta function are defined, respectively, as
- ifx <-—a,
saty(x) = Jx if x| <a, O(x)=

o if x > a,

1 ifx=0,

0 otherwise.

For compactness, we use k € 12 to denote k € {ny,n; +1,...,n3}.

2 Problem Statement

The objective of this chapter is to design a controller, termed the aggregator, which
simultaneously manages demand response and a regulation service. More specifi-
cally, we would like to design control signals which will enable our plant to track
a time varying reference signal (i.e., the energy imbalance). The plant of our model
(see Fig. 1) is composed of two subsystems, one for the demand response and one for
the regulation service. Evolution of each of these subsystems is subject to a number
of constraints, see Sect. 3. Denote x{f as the state of the reference (imbalance) signal,
xI" as the state of the demand response, x;° as the state of the regulation service, and

————— Imbalance Signal

I e, X
L4 1 xdr

-
u'e Aggregator xE

............................

Fig. 1 Block diagram of the linked system
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e; = x,° +x3 —x as the tracking error. The control signals ;" and u%" are produced
by the aggregator, which is a time-varying state feedback mapping fi,, : R3 — R2
We model the closed loop nonlinear time-varying system as

of  __ rf rf
Xep1 =X +wp,

xtril = fre (x, ’”tg’t)

Xy = fdr( ! Wi, 1)
e, = +x, —x,rf,
(e, u") = fage (x5, X, 1) (0

where f; and fg are decoupled, nonlinear functions, f,g, is the time varying
state feedback control function, which will be computed using MPC or heuristic
method. Details of these functions will be covered in Sect.4.1. Precise modeling
of the dynamics of imbalance reference signal neither is the focus of our chapter
nor will affect our conclusions. This is because the multirate MPC framework is
model based and does not place any restrictions on the reference dynamics. For
simplicity, in this work we assume it evolves as a zero mean random walk, driven
by a white noise w;’f. Historic data of this imbalance signal, and its associated price,
are publicly available on numerous ISO and utility websites. We also include a noise
term wd" in the demand response dynamics, due to the expected higher uncertainty
in the response of homes and small businesses.

3 Qualitative Description of Models and Specs

Numerous model constraints (e.g., capacity limitations, communication delays.)
impede the performance of our system. In the section below, all model constraints
we have incorporated into our system are outlined. A qualitative description of the
constraints is discussed, followed by their mathematical representation. Once again,
we note that the multirate MPC framework is capable of modeling a wide range
of dynamical models, including: continuous, discrete, hybrid, and stochastic. Since
our main goal here is to focus on the multirate dynamical aspects of regulation and
demand response, we will use the standard abstractions of regulation and demand
response dynamics as first-order processes with various capacity and ramp-rate
limits [1,6,9,19,22-25].

3.1 Demand Response Constraints

e Limited communication: Because communication protocols have yet to be
established for the demand response program, we assume limited communication
between the aggregator and demand response. Part of this chapter’s objective
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is to show that even when the performance of demand response is limited by
infrequent control updates, it is still able to reduce the workload of a regulation
service and contribute to grid stability.

* Customer disutility: One of the primary limitations of demand response is how
much customers are willing to cut back before they become inconvenienced.
From the aggregator’s perspective, it must limit the total resource consumption
by the demand response.

* Mechanical wear-and-tear of appliances: Excessive wear on appliances, specif-
ically those with a duty cycle, should be avoided. This means the aggregator
cannot send cutback signals to the demand response (homes and businesses) too
frequently. We model this by limiting the total variation of the output by the
demand response.

e Uncertainty of response: An essential component of the demand response
program is the ability for a customer to override the aggregator’s signal at any
time. As the population of demand response participants increases, so does the
variance of this uncertainty—hence the wfr in (1).

3.2 Regulation Service Constraints

* Maximum reserve capacity limitations: Typically, a power plant has allocated a
limited amount of its total capacity for regulation service. This means the peak
value of regulation power output is limited.

e Ramp rate: The large inertia of plant generators limits how quickly they can
ramp up or ramp down in response to the aggregator’s input. This is modeled as
a constraint on the peak value of the control input.

4 Quantitative Description of Models and Specs

4.1 System Model with Incorporated Constraints

Out next task is to put the constraints described in the previous section into a system
theoretic framework. Each constraint adds nonlinear behavior to the dynamics.
However, as we shall see in Sect. 5, our plant and controller can be reformulated as
a linear system with linear constraints. We first define the following parameters.

Ao, ag{ax: Maximum of the regulation service and demand response, respec-

tively. Saturation point of maximum reserve capacity.

. a;rgnp: Ramp rate constant for the regulation. Saturation point of the input u". For
completeness, we will also introduce af‘r;p, but it will be set assumed infinite in
this chapter.

e T, Ty: Input control update rates of the regulation service (demand response,
respectively).
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Fig. 2 Block diagram of the linked system with incorporated model constraints

With these parameters, we can describe the state space model (1) in more detail:

f  _ of rf
X1 =X +wp,

X5, = satye (x,rg + 8(t mod Tpe) sty (uﬁg)>,

x| = satge (x;jr + 8(¢ mod Ty,) (uflr + 4/ u}irwfr)) . )

See Fig. 2 for a block diagram representation of this system. Note the periodic time-
varying characteristic of the control signal: §( mod Ty )u* # O only if ¢ is a
multiple of Txx. Thus when T, # Ty we effectively have control output which
directs each sub-plant at different rates. For the purposes of our model, we assume
T,y = c¢Tyq with ¢ < 1. Thus, demand response receives information from the
aggregator less frequently than the regulation service.

Also, note that we have modeled the uncertainty in the demand response as a
noise wfr, which enters in a multiplicative rather than additive way, scaled by the
square-root of the input. This is in anticipation that ultimately, the demand response
is likely to be aggregated from a large number of participants, e.g. homes and small
businesses, thus the variance would scale as the sum of random variables.

We will not pursue the demand response uncertainty modeling any further in this
chapter. Observe that in the absence of this multiplicative noise, the structure of
the regulation and the demand response dynamics is identical, albeit with different
values for their respective parameters, of course. In addition, the regulation will have
a finite ramp-rate limit cxﬁﬁqp < oo, while the demand response will be assumed to

have effectively infinite ramp rate aﬂ;p = oo.
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4.2 Performance Measures

The following performance metrics measure the costs associated with each model
constraint:

o ||xT — x® — x|3: Buclidean norm of the tracking error. This is the primary
measure we would like to keep small. A soft constraint.

o ||x#(l1, [|x%|1: Total resource consumption by the regulation and demand
response. This is the dominant cost deriving from regulation cost and consumer
disutility. A soft constraint.

o 1% ooy [ [o: Maximum peak of the regulator (demand response, respec-
tively). Restricts state trajectories since they cannot operate beyond full capacity.
A hard constraint.

* ||x¥||ry: Total variation of demand response. A secondary cost related to
mechanical wear-and-tear of the load. A hard constraint.

o ||uf|]2, ||u||2: Weighted input cost for regulation (demand response, respec-
tively). A soft constraint.

o ||t%] | oos] [497]| 0o : Ramp rate constraints. Limits the speed either service can ramp-
up or ramp-down. A hard constraint.

Note that we represent the ramp rate constraints as slew-rate limits on the inputs;
they could just as well be represented as direct rate limits on the state variables.
Also, our choice of using the 1-norm and Euclidean norms to represent those costs
are primarily for illustrative and computational convenience. Many other choices
are possible for capturing the costs of regulation and demand response, depending
on the generation resource being used; while many other choices are possible as
metrics of tracking error. Although these other choices might change some of the
computational properties of the optimization problem (e.g., convexity), they will
still fall within the general framework here of optimizing an objective function
with terms representing power costs of regulation and demand response, and terms
representing an imbalance or tracking error metric (or price signal, as shown below).

Furthermore, the optimization framework presented here can also be used within
a more general framework that considers other costs, prices, and constraints. These
could include: fuel cost, startup/shutdown costs, regular operating costs; consumer
and appliance utility and discomfort, minimum up/down time constraints; prices for
other services, such as spinning and nonspinning reserve.

S Reference Tracking Multirate MPC

We now design a MPC scheme where at each time step the aggregator solves a
planning problem, which incorporates explicit knowledge of the plant model and
feedback information into its formulation. For simplicity of notation, we consider a
single regulation resource and a single demand response resource. However, the
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framework extends trivially to any number of either, by simply adding the obvious
costs and constraints corresponding to each new agent.

Given the performance measures outlined in the previous section and a finite
horizon N, the aggregator will solve the following planning problem at each time
stept =0,1,...:

I — ¢ — 25+

M=

k=0

N
minimize { Y pol|XE|[1 + o1 ||£8 [+
e ydr gre xdr k=0

1
p2llél15 + o3|l |13

M

x~
Il
S

subject to £,°, , = X;° 4+ 8((t + k) mod Tp)if, k € IV ™!
k1 = Xk o) Uy 0

R = R0+ 8((t + k) mod Ty)a, k e 17!

arg 18
Xy =X
adr _ _dr
Xo =X

s N
||x,rf||oo <af. . kel

15 Moo < e k € I

max’

180 < . k € 1)

2§ |oo < oy, k € 19

rmp°
N—1
Yo 1R — & < Brv. (3)
k=0
where £, ..., X5, X0, RV, g, L. iy, B, ... 6%, are our variables and
x®, T, Tar, affax,ag{ax,arrﬁqp,afép, and the initial states x,%, x are given data

(see Sect. 3); the constants pg, p1, p2, p3 allow us to weight the different terms in
the cost function.

The reference imbalance signal £,k = 0,..., N, with £ = xIT, is assumed to
be given. In practice, it could come from an internal or external forecast, previously
agreed upon contracts, day-ahead / hour-ahead markets, or other mechanisms.
For the purposes of this chapter, we will use a naive certainty equivalent estimate.
We will not view the reference signal as a state of the system, but instead as a zero
mean random walk that we are trying to track. At any time ¢ we only know the
current value x;’f , but not the future values. So for each planning step we will track
E[xI|x] = xI" fork = t,7+1,....Inother words, at each time step 7, the planning
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problem will track a constant £ = xI*,k = 0,..., N, that constant being our best

estimate of the average value of the future values of x™, which is the current value
x!, since it is a zero mean random walk.

The first summation in the objective function of the optimization problem above
penalizes tracking error, while the second and third summations are meant to capture
the input and output costs of the regulation and the fast demand response. Note that
this MPC planning problem can be cast as a convex QP with linear constraints,
which can be solved very efficiently, and to global optimality.

Thus at each time step 7, given (xI, x;%, x), the aggregator solves the planning
problem (3) and selects control signals using

Frse (xtrf’ X xtdr7 t) _ (u;g,mpc’ u?r,mpc)
_(n1g Ad
= (“0 !uor)-

The closed loop system with the MPC inputs will evolve as in (2). And because the
MPC respects all the system saturation and ramp rate limits, in the absence of noise,
(2) reduces to

f . rf
Xt =X +wr

g g rg.mpc
x5 = xit + 8 (1 mod Ty) uj

d d dr,mpc
xX;4 = x; 468 (t mod Tyr) u,

if g

e = X — xj® — xr,

Note again the time-varying characteristic of the control signal: §(¢ mod Txy)
XX, mpc

u; # 0 only if ¢ is a multiple of Tyy.

6 Market Price Based Multirate MPC

In this section, we model the scenario where the aggregator is operating off an
indirect imbalance signal, a market price signal A,, rather than a direct reference
signal x™. Again, for simplicity of notation, we consider a single regulation resource
and a single demand response resource.

This indirect market price formulation can be rigorously derived from the direct
reference tracking formulation above: one applies the standard economics method,
of appending the market clearing constraint (demand=supply) to the objective in
the first formulation, then duality is used to obtain a decomposition into the usual
producer and consumer subproblems. The objective in our second formulation
below is equivalent to producer subproblem, namely that of profit maximization;
the constraints remain unchanged.
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Toward this end, let us re-write our direct reference tracking problem (3) in an
equivalent way, with an extra variable y:

N .
>RE — w3+
k=0
N
minimize § Y pol|XE |1 + o1 |||+
we, udl’ 1rg )’Edl' y k=0
N_

1
> pollEf115 + psllas| 3

w-
Il
S

subject to yx = £F + £, kel

constraints of (3). “4)

Clearly, this formulation is equivalent to (3), as the new equality could be used to
eliminate y from (4) and recover (3). The new variable, y, represents the amount of
load actually fulfilled, as compared to x™, which is to be interpreted as the amount
of load power “desired.” The expression ||XIf — y¢|[3 can be interpreted as demand
disutility, or a penalty on unmet demand. The first line in the objective of (4) can
be interpreted as the consumer benefit function, which models demand. The second
and third lines of the objective can be interpreted as the production cost, as they
measure the amount of inputs used and the amount of power produced. Hence, they
model supply. The new constraint is simply enforcing that actual fulfilled demand
yk must equal supply X + .

Forming the partial Lagrangian with the demand=supply constraint we obtain

N
L(u,x,y,A) = Z —yill3 4+ Ay — £ — 1)
N
+ 3 pollFEI + prl1Z]
k=0
N—1
+kZ P2l 113 + palliag|13

=

= %Z —Yk||2+/1kYk}

N
2 polIBEI + pulIXT 1 — A (B + X{7)

~\_—\

Z z||azg||2+p3||uzf||2}

= 5)

The first line in the objective of (5) can be interpreted as the consumer surplus
function, which trades off deviation penalty with payment Ay y. The second and
third lines of the objective can be interpreted as the (negative of) producer profit, as
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they measure the amount of inputs and power produced minus revenue Ay (£, +X{").
Note that, for a fixed A, the consumer surplus is just a function of y, while the
production cost is just a function of X and u. Therefore, the partial Lagrangian is
seperable.

The dual function can now be defined as

N
40 = minimize { S 1R — 3|2 + Ay yk}
k=0

N
+minimize{ 5 pollEZ I + prlIRE] — A (B + )
u,fc,(3) k=0
NS e Adr(12
+ Z P2||”k ||2 + P3||”kr||2 . (6)
k=0

Thus for a given price A, computing the dual function amounts to solving two
separate optimization problems: a consumer surplus maximization and a producer
profit maximization.

The role of the market maker, aggregator, or ISO, would be to compute the
optimal price A*, which solves the dual optimization problem

maxixmize g(A). (7

Then, under suitable conditions (e.g. convexity of costs, and polytopic constraints)
strong duality will hold, so if the consumers and producers solve their individual
optimizations using the optimal prices A*, they will also solve (4), with the
demand=supply constraint intact, and hence the equivalent (3). Therefore, A* can
be used for price-based tracking.

Hence, in the price-based market scenario, the aggregator would solve the
following QP planning problem at each time step? = 0,1, ...:

N ~
> e (548 +
k=0
e N rg

minimize > pol|XE| 1 + 1[I+

Mrg’udr’xrg’xdr k=0
Nl ATE 12 ndr2
> palligg |1z + psllgl I3
k=0

subject to X%, = X + 8((t + k) mod Typ)it,, k € 1!

R = 2 4+ (1 + k) mod Ty, k € 19!

srg I8
Xy = X

adr . .dr
Xo =X
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125 loo < omaxs k € I

15 oo < o k € 1

AT
iE oo < i, k € 1N

d N—1
i oo < ary k € 1§
N—1

ad ~d
> i = & < B,
=0 3
where A,k = 0,..., N is the market price signal, with Ay = A; it is a surrogate

for the market’s best estimate of A*. The other constants and variables are as defined
earlier. The price signal A, could come from market clearing price, internal or
external price forecasts, previously agreed upon contracts, day-ahead / hour-ahead
markets, or other market mechanisms.

In this formulation, the objective function is minimizing the difference between
the cost of regulation and demand response, captured in the second two summations,
and the revenue, captured in the first summation. Minimizing this difference
between cost and revenue is equivalent to maximizing profit, which is defined as
revenue minus cost.

Thus at each time step 7, given (A, x;%, xI"), the aggregator solves the planning
problem (8) and selects control signals using

fagg ()Lt ) xt ’ xt ’ t) = (”;g’mpcv M;ir.mpc)
= (g’ i) -
As in the direct reference tracking case above, the resulting closed loop system with
the MPC inputs will evolve according to (2).

A couple of comments regarding the practical implementation of this price-based
controller are in order. We note that the seperability technique described here is
applicable to any number of generators (producers) and loads (consumers). Under
convexity and strong duality, the same optimal price vector will clear the entire
market with multiple consumers and producers. On the other hand, it is well known
that real-world power system market optimizations contain nonconvexities, e.g. due
to generation constraints such as startup/shutdown, minimum up/down time, and
general unit commitment issues. Regarding this issue we have two comments. First,
it can be shown that as the number of participants becomes large, the effect of these
nonconvexities diminishes, to the point where the duality gap can be negligible.
Second, even if this is not the case, one can view our method as being instantiated
after the unit commitment is done, i.e., during the economic dispatch phase, where
the integer variables associated with the nonconvexities have been predetermined.
Finally, the problem of estimating or forecasting the surrogate optimal market price

schedule A would need be adequately addressed, before a method such as the one
we propose here could be deployed in practice.
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7 Heuristic Control

In scenarios where it is not possible to solve a QP at each time step, we developed
a heuristic controller which can still deliver good performance, in terms of linking
demand response with regulation. This was achieved by designing the following
control signals

rgheu _ _of dr g
Uy =X X X,
drheu _ _rf dr g
uy " = X — X — sat,, (x/%) . 9)

where o is a parameter which adjusts how much of the imbalance is taken on by
the regulation service. The closed loop system will then evolve following (2).

Roughly speaking, in the absence of saturation, this controller feeds back the
tracking error between the reference and the sum of the regulation and demand
response. Thus, the closed loop system essentially acts like a multirate integral
controller for rejecting the reference disturbance. The more frequently acting
regulation service handles small variations below o, while the less frequent
but potentially larger demand response handles larger variations that could create
ramping problems for the regulation service. Beyond the level o, the regulation
control input is saturated explicitly, so that more of the control effort must come
from the demand response.

Section 8 provides simulation and performance evaluation of this system. We
will see that in certain operating regimes, this controller performs surprisingly well,
considering its simplicity.

8 Numerical Examples

Simulations of our model using both the heuristic and MPC control schemes are
generated below. Using the MPC framework, a Pareto optimal trade-off curve
between tracking error and total resource consumption by the demand response is
also generated. Note that our examples are all implemented with dynamics on the
timescale of seconds to emphasize the fast demand response aspects of this study.
However, our multirate MPC framework does not depend on this in any way. Energy
markets are continually evolving, so it is important to maintain generality.

8.1 Multirate MPC Versus Heuristic Controller

Figure 3 shows a simulation of (2) with the multirate MPC with the following
parameters:
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Linked services with MPC
100F T T T T ]

50| % dr
rg

2 1 =

power (MW)
o

-100} 1 1 1 1 ]
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time (sec)

Tracking error
100 T T T T

50 E

power (MW)
o

-100 1 1 1 1
0 200 400 600 800 1000

time (sec)

Fig. 3 State trajectories with the MPC controller for 7 = 1,000s. The reference has the fastest
update rate, followed by regulation, followed by demand response, with the slowest update rate

Parameter  Value
g

Ofmax 32 mw
ad 100 mw
otrr,ip 6 mw
ams oo

es N/A
Brv oo

Trg 4s

Tar 16s

Note the reference signal is shown as having the fastest update rate (1s). Next is
the regulation, with slightly “blockier” looking response (4 s). Slowest in terms of
update rate is the demand response, which has the “blockiest” response (16s).

In order to compare the performance of the heuristic model with the MPC
model, we matched as many parameters as possible. The MPC model enables
us to control more constraints than the heuristic model (e.g., total variation, total
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Fig. 4 State trajectories with the heuristic controller for 7 = 1,000 s

resource consumption.), so parameters not available to the heuristic model were
left unbounded. Figure 4 shows a simulation of (9) and (2) with the following

parameters:

parameter  value
Ciax 32 mw
adr 100 mw
a:rg}lp 6 mw
ag{lp N/A
Olres 12 mw
Brv N/A

T 4s

Tar 16s

State trajectories are plotted in Fig.4 over T = 1,000s.
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Fig. 5 Trade-off curve between the tracking error and total resource consumption by the demand
response for p; € [1 X 1078,10], and py = p» = p3 =0

8.2 Pareto Optimal Performance Curve

The following chart compares the performance of the heuristic model versus MPC
with p; = 1 x 1078, 2.5 and 9.5 and py = p» = p3 = 0. All other measures
were adjusted to be approximately equal. Note that for p; = 9.5 both controllers
have comparable tracking error cost, but the MPC controller reduces total resource
consumption by more than 50%.

Heuristic p; =10"% p, =25 p; =95
Tracking error ~ 401.25 325.21 365.70 439.01
[lx%], 45,870 34,415 25,020 20,322

A Pareto-optimal curve modeling the trade-off in cost between tracking error and
resource consumption by the demand response is generated in Fig.5. This curve
defines the limits of performance of our system and can be used as a benchmark
for measuring the performance of other controllers. This curve was generated
via the scalarized multi-criterion optimization problem defined in Sect.5 with
p1 €[1078,10] and py = p» = p3 = 1078, More specifically, a full MPC simulation
was run for 20 samples of p; € [107%, 10]. For each sample, the metrics ||x™ — x" —
x93 and ||x¥||; were computed. A graph of these values generates the curve.

One might wonder if the performance of the heuristic controller could be
improved, somewhat, by further tuning, or using a different heuristic controller.
The Pareto curve gives us the answer, by showing us potentially how much more
there would be to gain from such tuning or from another controller—quite a bit in
this case.
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Fig. 6 MPC controller with regulation only; no demand response

8.3 Regulation Versus Demand Response

Figures 6 and 7 compare the performance of pure regulation versus combined
regulation plus demand response. The results highlight how, in spite of the slower
update rate, the speed with which demand response can react significantly reduces
the error in the region around ¢ = 600, where the imbalance reference transitions
quickly from positive to negative. This is because the demand response has no
limitation on its ramp rate: af = oo, i.e., demand response can react almost

mp
instantly.

8.4 Price-Based Tracking via Economic MPC

Figure 8 illustrated tracking via the economic MPC method. The bottom plot shows
the price signal, which is used as an input to the economic MPC of (8). Note
that the price can go negative, e.g. around time 560s. This happens when supply
(DR+regulation) exceeds demand (load), in which case ancillary services are
paid to spend more energy. Similar requirements exist already in today’s ancillary
markets, known as “reg-up”/“reg-down”. The middle plot shows the multirate
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Fig. 7 MPC controller with equal regulation and demand response

control, with the larger less frequent stems being demand response, while the more
frequent smaller stems are the regulation. The top plot demonstrates that effective
tracking is possible using this price as a reference signal.

9 Conclusion

In this chapter, we have explored the question of whether it is possible to reduce
demand-supply imbalances in the grid, by jointly controlling both the supply-side
electric power regulation together with the demand-side energy consumption by
residential and commercial consumers. Specifically, we focused on the potential
performance improvements that arise from the complementary nature of the dynam-
ics of the two: regulation allows for frequent control updates but suffers from slower
dynamics; demand response has faster dynamics but does not allow as frequent
control updates.

We proposed a multirate MPC approach. This captures the varying dynamics and
update rates, as well as the nonlinearities due to saturation and ramp rate limits, and
we use a total variation constraint to limit the switching of the demand response
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Fig. 8 Economic MPC: tracking using the price as the reference input. (Top) Imbalance signal
along with regulation, DR, and regulation+DR. (Mid) Multirate control: regulation and DR.
(Bottom) Price signal

signal. The multirate MPC approach results in a QP that must be solved at each
time step. We also presented a much simpler heuristic controller which delivers
reasonably good performance. In addition, we showed that our approach has the
flexibility to be implemented in the two most likely deployment scenarios: where a
direct demand-supply imbalance reference tracking signal is available; or where an
indirect market price based imbalance signal is available.
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Numerical examples were presented to show the efficacy of this joint control
approach. Specifically, it was shown that there are indeed conditions under which
fast demand response can significantly enhance the quality of traditional supply-side
regulation, to achieve better overall performance.

In closing, we also point out that the multirate MPC framework presented here
is not limited to modeling only regulation and demand response. It can just as
well model any combination of loads and power sources, with differing dynamics,
control update rates, and sample rates.
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