
Network Coding Based Reliable Broadcast Protocol
in Multi-Channel Multi-Radio Wireless Mesh

Networks
Xiaobin Tan, Hong Wen, Kangqi Wang

Department of Automation, University of Science and Technology of China, Hefei, China, 230027
Email: xbtan@ustc.edu.cn, dreamone@mail.ustc.edu.cn, wannkq@mail.ustc.edu.cn

Abstract—Multi-Channel Multi-Radio (MCMR) Wireless
Mesh Networks (WMNs) have emerged as a new paradigm in
multi-hop wireless networks. In a typical MCMR WMNs, each
node has multiple radios with multiple available channels on each
radio, which allows nodes to have simultaneous transmissions
and receptions. Therefore, network performance is improved.
As a key technology in WMNs, reliable broadcast can provide
efficient data transmission. GreedyCode is a network coding
based reliable broadcast protocol proposed by our group earlier,
whose basic idea is to opportunistically select the forwarders
with the highest transmission efficiency to transmit the encoded
packets while the neighbors just listen. In this paper, we consider
one-to-all broadcast scenarios and propose a novel GreedyCode
based reliable broadcast protocol MCMR-GreedyCode, which
is two-fold: channel assignment and link scheduling. Specially,
we propose the Level Channel Assignment Strategy (LCAS)
algorithm and determine the number of data packets to be
sent each time according to the feedback information from one-
hop neighbor nodes. In addition, any intermediate node that
receives complete data can forward data to those nodes that
don’t. The process repeats until all destination nodes receive
complete data. Simulation results show that MCMR-GreedyCode
has lower network latency and greater throughput than some
existing network protocols, such as GreedyCode, MCM, MLRM,
etc.

I. INTRODUCTION

Multi-Channel Multi-Radio (MCMR) Wireless Mesh Net-
works (WMNs) have emerged as a new paradigm in multi-hop
wireless networks. They enhance network-wide throughput
by parallelizing packet forwarding on multiple channels and
radios. They also can be used on the “last mile” problem for
extending or enhancing Internet connectivity [1].

As a key technology in WMNs, reliable broadcast can
provide efficient data transmission, a fundamental problem
for which is how to make sure each node receive complete
message from the source node correctly despite the low-quality
link.

Proposed by Ahlswede et al. [2], Network Coding(NC) will
bring a performance boost to the network. By mixing the con-
tents of multiple packets before forwarding, and broadcasting
different encoded packets through intermediate nodes, NC can
reduce duplicate transmission apparently. And categorizing
NC into intra-flow NC and inter-flow NC motivates us to apply
it to WMNs.

MORE [3], a MAC-independent opportunistic routing, is
the first multicast routing protocol based on intra-flow NC.
MORE randomly mixes packets before forwarding, which
ensures that routers which hear the same transmission do not
forward the same packets. Therefore, MORE doesn’t need
special scheduler to coordinate routers and can run directly
on 802.11. However, MORE has the “crying baby” problem,
which seriously degrades the performance. Pacifier [4], a new
high-throughput reliable multicast protocol for WMNs, seam-
lessly integrates four building blocks: tree-based opportunistic
routing, intra-flow network coding, source rate limiting, and
round-robin batching. It supports high-throughput, reliable
multicast routing in WMNs, and solves the “crying baby”
problem in MORE effectively. R-Code [5], a reliable and
working broadcast protocol based on intra-flow NC, constructs
a Minimum Spanning Tree (MST) as the backbone, where the
weight of each link equals the ETX (Expected Transmission
Count) on that link. GreedyCode [6], a greedy strategy based
reliable broadcast protocol proposed by us earlier, abandons
the multicast tree, trying to make full use of all links, and
opportunistically actives the forwarding nodes with the highest
transmission efficiency within one-hop area to broadcast the
encoded packets.

However, these protocols are all based on single channel
single radio (SCSR) network environment. To further improve
network performance, MCMR technology in WMNs is pro-
posed: there exists several orthogonal channels with each node
equipped with several interfaces. Besides, assigning a channel
to one link is necessary for one link to exist. Therefore, in
order to attain a higher performance in MCMR WMNs, an
excellent channel assignment strategy is needed. M.Jahanshahi
et al. [7] proposes a fundamental design issue for joint
multicast routing and channel assignment in MCMR WMNs
and provides a mathematical frameworks called binary integer
programming(BIP) model. However, it is worth mentioning
that the framework is centralized and the computation cost is
very high, especially in large-scale networks. What’s more,
it doesn’t take link quality into account. Zeng [8] proposes
MCM algorithm, which first builds a multicast structure by
minimizing the number of relay nodes and hop count distances
between the source and destinations, then uses dedicated chan-

978-1-4673-5939-9/13/$31.00 ©2013 IEEE978-1-4673-5939-9/13/$31.00 ©2013 IEEE

2013 IEEE Wireless Communications and Networking Conference (WCNC): NETWORKS2013 IEEE Wireless Communications and Networking Conference (WCNC): NETWORKS

1392

nel assignment strategy to improve the network performance.
But it ignores some potential links as well as the influence of
link quality. Then, Zeng proposes another multicast algorithm
MLRM [9] that considers link quality. However, it still ignores
some potential links by constructing a multicast tree structure
as its backbone. Although MLRM is a great improvement over
MCM, it only considers a tree as its backbone. In this paper,
we propose to effectively use all the links, it is no doubt that
the network performance will be better.

In this paper, we put forward a novel GreedyCode based
reliable broadcast protocol MCMR-GreedyCode, which is
two-fold: channel assignment and link scheduling. Specially,
we propose the Level Channel Assignment Strategy (LCAS)
algorithm and determine the number of data packets to be sent
each time according to the feedback from one-hop neighbor
nodes in MCMR-GreedyCode. Besides, when one node is
about to send data, it makes channel assignment first, then link
scheduling. The process repeats until all destinations receive
complete data.

The rest of this paper is organized as follows: In Section
II, we introduce the system model and the basic idea of
GreedyCode. In Section III, we describe MCMR-GreedyCode
in detail. In Section IV, we evaluate the performance of
MCMR-GreedyCode. Finally, we draw the concluding remarks
in Section V.

II. PRELIMINARIES
In this section, we will introduce the underlying network

model for MCMR WMNs as well as the basic idea of
GreedyCode protocol proposed by our group earlier.

A. System Model
To simplify the system model, the network is considered as a

graph G = (V,E), where V is the set of all nodes and E is the
set of all links among neighboring nodes. Two nodes u and v
are directly connected and form a communication link (u, v)
if they are within the transmission range of each other and
share a common channel. In addition, each link has one weight
p(i, j) defined as the transmission probability from node i to
node j, and it holds that p(i, j) = p(j, i). In our system model,
there exists only one source node which has a volume of data
to broadcast to all destination nodes. Those nodes that receive
complete data will play the role of forwarding nodes meaning
that they can also transmit data. Besides, when two nodes that
share a link in common both have received complete data, the
link can be deleted due to its uselessness for data transmission.

B. The Idea of GreedyCode
GreedyCode [6] abandons the structure of the multicast tree,

trying to make full use of all links, and dynamically selects
the forwarders having the largest OBT (One-hop Broadcast
Throughput) within one-hop area to forward data. OBT is
defined as follows:

OBT (i) =

∑

j∈Ui

1
wi,j

if node i has received the
whole batch;

0 otherwise.
(1)

Where, u(i) is the neighbor set of forwarding node i,
which has not received the whole batch. wi,j , defined as the
reciprocal of pi,j , is the ETX of link (i, j).

Next, we will illustrate the efficiency of GreedyCode by a
simple example. Considering a network consisted of five nodes
and seven links, where S is the source node which has a batch
of k packets to deliver to all the other target nodes A, B, C,
D. Fig.1 shows the transmission process of GreedyCode.

3

4

2
3

2

4

3

2k

2k

3
2
k3

2
k

3
2
k

3
2
k

C

S

A

B

D

Fig. 1: Simple example of GreedyCode.The number on each link represents
the ETX of that link, that is, the reciprocal of transmission probability. First of
all, source node S broadcasts 2k packets, and then A broadcasts 3

2
k packets,

further A broadcasts 3
2
k packets again, so it will take 5k packets’ transmission

time to guarantee all destination nodes receive complete data.

Firstly, source node S broadcasts 2k packets, guaranteeing
the reception of k packets at node A and 1

2k packets at node B
on average, respectively. Then node A transmits 3

2k packets,
making node B, C, D receive k, 1

2k, 1
2k packets on average

respectively. Furthermore, both node C and D will receive k
packets on average after 3

2k packets’ transmission at node A.
Therefore, it takes 2k + 3

2k + 3
2k = 5k packets’ transmission

time to guarantee all the target nodes receive k packets, which
has a better performance than Pacifier and R-Code [6].

In fact, the performance of GreedyCode is limited due to
SCSR technology, where each node can only send or receive
message each time. However, nodes can have simultaneous
transmissions and receptions if MCMR technology is used,
which motivates the emergence of our protocol: MCMR-
GreedyCode.

III. MCMR-GREEDYCODE

In GreedyCode [6], only single channel, single radio is
considered, which limits further improvement of network
performance. Therefore, we propose a novel MCMR based
protocol MCMR-GreedyCode, which is two-fold: channel
assignment and link scheduling. Next, we’ll describe them in
detail.

A. Channel Assignment Strategies

Assigning a channel to one link is a necessary condition
for data transmission on it. But the problem is how to make
the proper strategy for channel assignment before transmitting
data. With respect to the problem, We put forward a novel
channel assignment strategy: Level Channel Assignment Strat-
egy (LCAS), whose basic idea is to assign channels to links by
several rounds until all the links have been assigned channels

1393

or the number of assigned channels equals to the radio number
of nodes. At each round, the intention of LCAS is dynamically
selecting a channel to assign for the purpose of reducing the
existed interferences among links to the least. And the detail
process of LCAS is described as Algorithm 1.

Algorithm 1 The process of LCAS algorithm
Require: S: any node that tends to send data.

Set Neigh: the neighbor set of node S, which have not received data
fully.
UCS: the set of unassigned channels.
C: the total number of orthogonal channels.
Link Set(c): if assigning channel c, no interference links existed between
S and Set Neigh.
Find Interference(cc, S, Set Neigh): if assigning channel cc, the
total interference among links.
Find Link Set(t, S, Set Neigh): finding no interference links existed
between S and Set Neigh if assigning channel t.

Ensure: UCS = {1, 2, 3, .., C}
while Set Neigh 6= {∅} and UCS 6= {∅} do

k ⇐ +∞
for all cc in UCS do

y ⇐ Find Interference(cc, S, Set Neigh)
if y < k then

t = cc
k = y
Link Set(t) = Find Link Set(t, S, Set Neigh)

end if
end for
for all Link(S, n) in Link Set(t) do

Assigning Channel t to link(S, n)
Excluding n From Set Neigh

end for
Excluding t From UCS

end while

Next, we illustrate the principles of LCAS algorithm using
a simple example. Given two orthogonal channels 1, 2 with
each node equipped with 2 radios. What we’ll do is to assign
channels to the links between node S and its neighbor nodes
A, B, C, D. Besides, channel 1, 2, 1 has been assigned to
link(A,E), (B,F), (C,G) respectively (Fig.2).

In the first round, node S can select an unsigned channel
from {1, 2}. If selecting channel 1, link (S,A) will interfere
with link(A,E), so will link (S,C) and (C,G). However if
selecting channel 2, only one pair of links, namely link(S,B)
and (B,F), will interfere with each other. Therefore, to make
the interferences least, it is wise to assign channel 2 to
link(S,A), (S,C) and (S,D). In the second round, assigning
channel 1 to the link(S,B) directly is ok. In a nutshell, the
channel assignment for Fig.2 is finished according to the
LCAS algorithm.

After assigning channels, the next problem to be solved is
the link scheduling each time.

B. Link Scheduling

Link Scheduling is to mainly deal with the problem that
how many data packets to be sent each time according to
the feedback information from one-hop neighbor nodes. In
our view, any forwarding node, saying i, will stop the data
transmission this time only when at least one neighbor node
receives complete data. But the question is how many packets
to be sent for node i before stopping.

S

A

B

C

D

E

F

G

1

2

1

Fig. 2: Simple example of LCAS algorithm. The numbers on Link(A,E),
Link(B,F), Link(C,G) represent assigned channel labels.

Given set neighI represents these nodes that have not
received complete data packets within one-hop area of node I.

For ∀j ∈ set neighI , as our assumption, node j not only
locates within one hop local area of node I , but also within
one hop local area of other nodes that have received complete
data, the set of which is defined as set otherIj .

Therefore, in order to make node j receive complete data
packets, it faces a problem that how many packets to be sent
simultaneously for node i and nodes of set otherIj . This can
be formatted as the following expression:

Outj =
|T | − hrj

pI,j +
∑

n∈set otherIj

pn,j
(2)

where, |T | is the number of complete data packets that node j
is tend to receive, hrj is the received number of data packets
at node j, pI,j is the transmission probability from node I to
node j.

After node j receives complete data packets, it will send
feedback message to node I as well as each node of
set otherIj by a common channel. Thus, node I updates the
number of data packets to be sent this time from the feedback
message, which is defined as follows:

Tr DataI = Minj∈set neighI
{Outj , T r DataI} (3)

So does each node of set otherIj . What’s more, if the
number of nodes that can send data to node j exceeds the
total number of its interfaces k, then node j will select those
nodes with top k OBT to receive data.

C. A simple example of MCMR-GreedyCode

Fig.3 shows a topology the same as Fig.1. Given existing 3
orthogonal channels and 2 interfaces at each node.

First of all (Fig.3(a)), source node S broadcasts 2k packets
after assigning channel c = 1 to link(S,A) and link(S,B),
which will lead the reception of k packets at node A and 1

2k
packets at node B, respectively.

In addition (Fig.3(b)), after the reception of complete data at
node A, the link(S,A) can be deleted. Furthermore, channel
c = 2 is assigned to link(A,B), (A,C) and (A,D). After
this, node A and node S will broadcast 6

7k data packets
simultaneously to guarantee the complete reception of k data

1394

packets at node B. Meanwhile, 2
7k data packets are received

by node C, node D respectively.
What’s more (Fig.3(c)), the links (B,S), (B,A) can be

deleted after the reception of complete data at node B. Then
node A and node B forward 6

7k data packets simultaneously
to guarantee the reception of k packets reception at node D
after assigning channel c = 3 to link(B,D).

Finally (Fig.3(d)), after assigning c = 1 to the link(D,C),
node A and node D forward 36

49k data packets simultaneously
to node C, which guarantees its complete reception of data.

In a nutshell, to guarantee the complete reception of all the
destination nodes, the transmission time of 2k+ 6

7k+ 6
7k+ 36

49k
(about 4.45k) packets is necessary. Therefore, the performance
of MCMR-GreedyCode is superior to those of Pacifier, R-
Code and GreedyCode. In fact, node S can forward data to
node A and B using radio 1 and 2 simultaneously, so do other
nodes. Here, we only consider radio 1 for easy interpretation.
Therefore, the real performance will be better, which means
the total transmission time will be less than 4.45k.

3

4

3

4
3

2

3

2

4

C=1

C=1

2

4

3

3

2

4
3

C=1

C=2

C=2

C=2

2

4

3

2

3
C=2

C=2

C=3

2

4

3

3

2

4
3

C=2

C=1

(a)

(c)

(b)

(d)

B

S

B

A

C

D

S

B

A

D

C

S

A

D

S

B

A

D

C
C

Fig. 3: The transmission process of MCMR-GreedyCode. The number on
each link represents the ETX of that link, that is, the reciprocal of transmission
probability. (a)shows S’s transmission.(b)shows node S and A’s simultaneous
transmission.(c)shows A and B’s simultaneous transmission. (d)shows the
simultaneous transmission of node A, D.

D. Design of MCMR-GreedyCode

At the beginning, there is only one node called the source
node that tends to broadcast packets to all the destination
nodes. First of all, after making proper channel assignment
using LCAS algorithm for the links between the source
node and its one-hop neighbors, the source node will keep
broadcasting encoded packets of the current batch until at least
one neighbor node receives the whole batch and decodes all
the original packets. Then, a neighbor node, saying node i,
broadcasts a notification message to its one hop neighbors
by a proper channel. After this, the source node deletes the
link between it and node i. Besides, any node that receive
complete data can play the role of temporal source, in other

words, it has the ability of transmitting data. Therefore, when
one node is about to send data, it makes channel assignment
firstly, then link scheduling. The similar process repeats until
all destinations receive complete data.

IV. PERFORMANCE EVALUATION

In this section, the actual performance of MCMR-
GreedyCode is investigated through simulation. The NS2
simulator program is used where network topology, physical
layer and MAC layer are configured the same as those in [6],
which are shown in Table I. And comparing our schemes with
Pacifier, R-Code, GreedyCode as well as MCM, MLRM is
our chief work. Since broadcast is a special case of multicast,
MCM and MLRM can be easily adapted to be a broadcast
algorithm. we concern the following metrics:

Average broadcast latency: The time it takes when the
source just started to transmit data to the time when all
destinations received the complete data.

Throughput: the total data volume that all the destination
nodes receive in a unit time period.

TABLE I: Simulation parameters

Simulation parameters Value

Radio propagation model Two ray ground
Simulation area 400 m × 400 m
Number of nodes 16
Transmission range 160 m
Movement model Random waypoint
Traffic type CBR(UDP) and TCP
Antenna Omni-Antenna
Bandwidth 10M
MAC type Mac/802.11
Packet size 200

A. The Performance of MCMR-GreedyCode

We first investigate the performance of MCMR-GreedyCode
with different numbers of channels and interfaces, and we set
the batch size as 16. Fig.4 and Fig.5 show the results of the
experiment.

From the results of Fig.4 and Fig.5, we can draw the
conclusion that when the number of channels is fixed, the more
the number of interfaces, the higher the throughput and the less
the average broadcast latency. Besides, when the number of
interfaces is fixed, the more the number of channels, the higher
the throughput and the less the average broadcast latency.

Because there will be more numbers of links with the
increasing numbers of channels and interfaces. Specifically,
nodes can send or receive data from multiple interfaces si-
multaneously, which brings the performance boost.

B. Comparing with Pacifier,R-Code,GreedyCode

In this experiment, we set the number of orthogonal chan-
nels as 3, the number of interfaces as 2. Fig. 6 and Fig. 7 show
the results of the experiment of Pacifier, R-Code, GreedyCode
and MCMR-GreedyCode with a batch size of 8, 16, 32 and
64.

1395

3 4 5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Channels

A
ve

ra
ge

br
oa

dc
as

t
la

te
nc

y
Number of Radios:2
Number of Radios:3
Number of Radios:4
Number of Radios:5

Fig. 4: Average broadcast latency for MCMR-GreedyCode with different
numbers of channels and interfaces.

3 4 5 6
200

300

400

500

600

700

800

Number of Channels

T
hr

ou
gh

pu
t(

K
bp

s)

Number of Radios:2
Number of Radios:3
Number of Radios:4
Number of Radios:5

Fig. 5: Throughput for MCMR-GreedyCode with different numbers of
channels and interfaces.

We can conclude from Fig.6 and Fig.7 that average broad-
cast latency under different protocols will increase with the
increasing of batch size, so will the throughput. Specially,
MCMR-GreedyCode achieves the optimal performance among
all the protocols due to the nature characteristic of multi-
channel, multi-interface that each node can send or receive
data from multiple interfaces simultaneously. Obviously, it
increases the throughput and decreases the average broadcast
latency.

8 16 32 64
0

1

2

3

4

Batch Size

A
ve

ra
ge

br
oa

dc
as

t
la

te
nc

y

MCMR-GreedyCode
GreedyCode

R-Code
Pacifier

Fig. 6: In case of 3 orthogonal channel and 2 radios equipped in each
node, average broadcast latency for Pacifier, R-Code, GreedyCode, MCMR-
GreedyCode under different batch size.

8 16 32 64
0

200

400

600

800

1,000

Batch Size

T
hr

ou
gh

pu
t(

K
bp

s)

Pacifier
R-Code

GreedyCode
MCMR-GreedyCode

Fig. 7: In case of 3 orthogonal channel and 2 radios equipped in each node,
throughput for Pacifier, R-Code, GreedyCode, MCMR-GreedyCode under
different batch size.

C. Comparing with MCM and MLRM

According to the results in Fig. 4 and Fig. 5, the perfor-
mance of MCMR-GreedyCode is improved to some extent
when the number of interfaces is greater than 4. Therefore,
we set the number of interfaces as 4 in the experiment. Fig.8
and Fig.9 show the results of the experiment.

It is obvious that the performance of MLRM which takes
link quality into account is better than that of MCM. How-
ever, MLRM exploits the multicast tree only. As such, its
performance is limited. MCMR-GreedyCode, on the other

1396

3 4 5 6
0

0.2

0.4

0.6

0.8

1

Number of Channels

A
ve

ra
ge

br
oa

dc
as

t
la

te
nc

y
MCMR-GreedyCode

MLRM
MCM

Fig. 8: Average broadcast latency for MCMR-GreedyCode, MLRM, MCM
under 4 radios equipped in each node.

3 4 5 6
200

300

400

500

600

700

800

Number of Channels

T
hr

ou
gh

pu
t(

K
bp

s)

MCMR-GreedyCode
MLRM
MCM

Fig. 9: Throughput for MCMR-GreedyCode, MLRM and MCM under 4
radios equipped in each node.

hand, makes use of all links, and is expected to have a better
performance than MLRM.

V. CONCLUSION

In this paper, we consider one-to-all broadcast scenarios
and put forward a novel GreedyCode based reliable broadcast
protocol MCMR-GreedyCode, which is two-fold: channel as-
signment and link scheduling. Specially, we propose the Level
Channel Assignment Strategy (LCAS) algorithm and deter-
mine the number of data packets to be sent each time according
to the feedback from one-hop neighbor nodes in MCMR-
GreedyCode. That is, when one node is about to send data,

it makes channel assignment first, then link scheduling. The
similar process repeats until all destinations receive complete
data. Through simulation, we can conclude that our protocol
has a better performance than Pacifier, R-Code, GreedyCode,
MCM and MLRM.

However, the OBT in MCMR-GreedyCode is just consid-
ered within one hop local area, which is not always optimal.
One better greedy strategy is to estimate the efficiency of one
node from the respect that how much it will potentially make
benefit for all the other nodes that have not received complete
data, which is our further work.

ACKNOWLEDGMENT

This work was supported by the Fundamental Re-
search Funds for the Central Universities under grants
WK2100100011, Anhui Provincial Natural Science Founda-
tion under grants 11040606M136. The authors would like
to thank the editor and anonymous reviewers whose helpful
comments improved the quality of this paper. Also we would
like to express our gratitude to all the people who ever helped
us.

REFERENCES

[1] I. F. Akyildiz, X. Wang, and W. Wang, Wireless mesh networks: a survey.
Computer Networks, vol. 47, no. 4, pp. 445 - 487, March 2005.

[2] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, Network information
flow. IEEE Transactions on Information Theory, vol. 46, no. 4, p.1204-
1216, July 2000.

[3] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, Trading structure
for randomness in wireless opportunistic routing. in Proc.of ACM
SigComm07, Kyoto, Japan, August 2007.

[4] D. Koutsonikolas, Y. C. Hu, and C.-C. Wang, Pacifier: High-
throughput,reliable multicast without crying babies in wireless mesh
networks. in Proc.of IEEE InfoCom 2009, Rio de Janeiro, Brazil, April
2009.

[5] Z. Yang, M. Li, and W. Lou, R-code: Network coding-based reliable
broadcast in wireless mesh networks. Ad Hoc Networks, vol. In Press,
Corrected Proof, pp. 1570 - 8705, 2010.

[6] Xiaobin Tan, Hao Yue, Yuguang Fang and Wenfei Cheng, Greedy Strategy
for Network Coding Based Reliable Broadcast in Wireless Mesh Network.
IEEE Globecom, Anaheim, California, USA, December 2012.

[7] M. Jahanshahi, M. Denghan and M. R.Meybodi, A mathematical formu-
lation for joint channel assignment and multicast routing in multi-channel
multi-radio wireless mesh networks. Journal of Network and Computer
Application, 2011, 34(13), 1869 - 1882.

[8] Guokai Zeng, Bo Wans, Yong Ding, Li Xiao and Matt Mutka, Efficient
Multicast Algorithms for Multichannel Wireless Mesh Networks. IEEE
Trans.on Parallel and Distributed Systems, 2010, 21(13): 86 - 99.

[9] Guokai Zeng, Bo Wang, Matt Mutka, Li Xiao and Eric Torng, Efficient
link-heterogeneous multicast for wireless mesh networks. Journal,
Wireless Networks,Volume 18 Issue 6, August 2012, 605 - 620.

[10] Alicherry M, Bhatia R and Li L, Joint channel assignment and routing
for throughput optimization in multi-radio wireless mesh networks. Pro-
ceedings of the 11th ACM international conference on mobile computing
and networking (MOBICOM 2005), Cologne, Germany, 2005.

[11] Yuan J, Li Z, Yu W, Li B, A cross-layer optimization framework for
multihop multicast in wireless mesh networks. IEEE Journal on Selected
Areas in Communications, 2006.

[12] S. Lee, M. Gerla, and C. Chiang, On demand multicast routing protocol.
In IEEE WCNC 99, pages 1313-1317, Aug. 1999.

[13] S. Roy, D. Koutsonikolas, S. Das, and Y. C. Hu, High throughput
multicast routing metrics in wireless mesh networks. In ICDCS 06,
2006.

[14] I.-H. Hou, Y.-E. Tsai, T. Abdelzaher, and I. Gupta, Adapcode: adaptive
network coding for code updates in wireless sensor networks. in Proc.of
IEEE InfoCom 2008, Phoenix, AZ, USA, April 2008.

1397

