
Leader election algorithms: History and novel schemes

Mina Shirali
Member of young
researchers club

Islamic Azad University of
Qazvin

Mina_shirali@yahoo.com

Abolfazl
HaghighatToroghi

Leader of IT department
Islamic Azad University of

Qazvin
haghighat@qazviniau.ac.ir

Mehdi Vojdani
Member of young
researchers club

Islamic Azad University of
Qazvin

Mehdi_vojdani@yahoo.com

Abstract

This Days networks are growing rapidly and

managing this networks becomes harder too. A similar
case can be seen in the leader election area. leader
election is the process of designating a single process as
the organizer of some task distributed among several
nodes. first we discussed about primary leader election
algorithms (bully and ring) and their improvements then
considering some assumptions we have proposed two new
schemes and discussed about some aspects of them.We
proposed Sun(n) and Divided(n) algorithms that can be
seen as a tradeoff between bully and ring algorithms.
Note that if proposed algorithms didn’t work then the
original algorithm will be done. That is this algorisms are
optionally and just try to reduce latency in the vast
networks. In general our paper provide a srvey and a
good vision af designing leader election algorithms.

1. Introduction

In distributed computing, leader election is the process
of designating a single process as the organizer of some
task distributed among several computers (nodes). In
many cases we need a coordinator in the network for
coordination tasks. When this coordinator crashes, we
have to select another process as the substitute. Here
leader election algorithms appear. In this paper we
discussed about main leader election algorithms and some
of their aspects in the sections 1,2 and 3. then their
improvements are explained. However our main
centralization is on the ring algorithm. Two new schemes
are proposed too in the sections 4 and 5. In the section 7
conclusion and comparisions are provided too. Reading
this paper gives a good vision for designing a good
algorithm depending on your conditions.

2. Bully Algorithm

Suppose one process P[i] detects that the coordinator
has crashed and now we require to find new coordinator
for coordination operation in system. All of the processes

have one process number. Bully algorithm for choosing
the best substitute (biggest process number), follows this
steps:

a) P[i] sends “ELECTION” message to all processes that

have bigger number than P[i].
b) Each process that is active and it’s number is bigger

than P[i], will send a “OK” message to P[i].
c) If P[i] has received even one “OK” message, it will

know that it can not be the coordinator else it will
repeat steps a to c.

d) Finally one process that has bigger number than others
and hasn’t received any “OK” message, announce
itself as new coordinator to all of the processes by
“COORDINATOR” message.

Suppose that we have n active processes in a

distributed system and middle process with process
number ⎣ ⎦2/n detects that coordinator has crashed. Assume
that mn(i) is total number of messages that process p[i]
sends (“ELECTION” message) and receives (“OK”
message) after sending :

Number of messages =
mn(1) + mn(2) +…+ mn(⎣ ⎦2/n - 1) + mn(⎣ ⎦2/n) +
mn(⎣ ⎦2/n + 1) + … + mn(n)
= 0+0+…+0+ mn(⎣ ⎦2/n) + mn(⎣ ⎦2/n + 1) + …+ mn(n)
= (⎡ ⎤2/n + ⎡ ⎤2/n) + ((⎡ ⎤2/n -1) + (⎡ ⎤2/n -1)) +…+2 + 0
≅ n + (n-2) + ……+ 0 => O(n^2)

Figure 1. Primary bully algorithm

Steps are:
1-P[i] sends "ELECTION" to greater ones

Third 2008 International Conference on Convergence and Hybrid Information Technology

978-0-7695-3407-7/08 $25.00 © 2008 IEEE

DOI 10.1109/ICCIT.2008.57

993

Third 2008 International Conference on Convergence and Hybrid Information Technology

978-0-7695-3407-7/08 $25.00 © 2008 IEEE

DOI 10.1109/ICCIT.2008.57

1001

2-P[j] sends "OK" to P[i] where j>=i
3-P[j] sends "ELECTION" to greater ones
4-P[j] receives "OK" from greater ones that are not down
5- greatest one broadcasts "COORDINATOR" message
=> we have 5 steps and latency = 1+1+1+1+1=5

2.1. Improvement

In the step b of this algorithm processes can send their

numbers to p[i](instead of “OK” message) so in the step
c, process P[i] can choose biggest number (considering
received numbers) and announce it as coordinator by
broadcasting the “COORDINAOR” message. So in the
fist step of this algorithm p[i] will send an “ELECTION”
message, then it will receive bigger numbers of active
processes, then it will select biggest one and announce it
as coordinator by sending a “COORDINATOR” message.
Considering this steps and previous assumptions the

Number of messages= ⎡ ⎤2/n + ⎡ ⎤2/n +n ≅ 2n => O(n)
Number of steps=3
Latency = 1+1+1=3

3. Token Ring Algorithm

In this algorithm, similar to the bully algorithm, each
process has one process number. but we have one
difference here. In token ring algorithm each process in
the ring must save addresses (ring's map).

Suppose that process P[i] detects that coordinator has

crashed and now it want to find new coordinator for
coordination operation in the system by ring algorithm.
This algorithm works as below:
a) Process P[i] sends one token with “ELECTION” title

to the next process in the ring. (to P[i+1]).

Figure 2. Primary ring algorithm

b) If next process doesn’t reply, then process P will
suppose that next process is down and will send
“ELECTION” message to second next process in the

ring (to P[i+2]). P[i] repeats this works until finds next
process that is not in down status and has Recieved the
"ELECTION" message. Founded process repeats this
work too, and this will go on till election message
returns back to the process P[i]. each process when
receives "ELECTION" message; before forwarding
that, puts it's process number in that message.

c) When the "ELECTION" message returns back, then
P[i] will choose the biggest process number as
coordinator(between process numbers in the "election"
message). then it wheels a “COORDINATOR”
message in the ring to announce new coordinator.

In this case, we have two round of "message passings"

in the ring. First for "CRASH" and "ELECTION"
massages and second for "COORDINATOR" message.
So we have 2 step and the number of messages and
average time are as below:
Number of messages = 2*n =2n => O(n)
Latency = 2*n =2n => O(n)

Note that each process adds it's number to the
"ELECTION" message, so when number of processes
increase (specially in the end of ring), overheard increases
too. For solving this problem we edit this algorithm as
each process adds its number to the "ELECTION"
message as "biggest" only when it's number is bigger than
"biggest" number in the message. In another word we can
send only biggest one instead of all of the numbers.

Now assume that more than one process detect that
coordinator is crashed and send token in the ring. In this
case we have additional overhead and even consistency
may be refused. For solving this problem we can change
algorithm as; when one of this processes(that has sent an
"ELECTION" message), receives message that is sent
from other ones it will follow this rules:
a) If the number of this process is bigger than the number

of sender process, it will kill the message.
b) If the number of this process is less than sender's

number, it will let this message go round.

4. Sun Algorithm Idea

Assume that we just can forward messages clockwise

or we don’t want to use duplex links. In the sun ring
algorithm similar to the ring algorithm we have a ring, but
this ring is divided into m multiple subrings. We can
divide the ring with n process to the d subrings (d<n).
however total number of messages in this algorithm is not
less than original ring algorithm but the overal latency is
reduced. this algorithm for choosing new coordinator
passes the below steps:

a) P[i] which has detected that the coordinator has

crashed; wheels the "election" message (token) with
its process number as "starter" in the ring.

9941002

b) When a process that its numbers is a multiple of m (i
mod m =0, denoted by Pm) receives the "election"
message, it starts wheeling this message in the ring of
the processes that their numbers are a multiple of m
(denoted by Pm ring). This message contains first Pms
number that has forwarded message as "informer".

c) Each Pm when receives "election" message, starts
wheeling an “election” message with its number as
"subring-biggest" to the next process in the related
subring.

d) Each process that is not a Pm when receives “election”
message, if it's process number is bigger than
"biggest", adds it's number to this message as (in place
of) "biggest" and then forwards it to the next process.

e) When the "election" message rerurns back to the
informer (after wheeling in all of the rings), it kills this
message and sends a "M-coordinator" message to the
next Pm with its Number as the "ring-biggest" too.

f) Each Pm when receives “election” message, kills the
“election” message then considering "subring-biggest"
in the "election" message and its own number it will
choose the biggest one as "subring-biggest". then it
waits for "M-coordinator" message.

g) Each Pm that has received both "election" and "M-
coordinator" messages, compares "ring-biggest" with
"subring-biggest" and chooses biggest one as "ring-
biggest". After that it will pass "ring-biggest" to the
next Pm with "M-coordinator" message.

h) When "M-coordinator" message, received this
message returns back to the informer, it will get "ring-
biggest" and kills this message. then starts wheeling a
"coordinator" message with "ring-biggest" as
coordinator in a sun ring method.(i.e. wheeling in the
ring of Pms and Each Pm will wheel this message
into its subring too).

In the figure 3 it is shown that how this algorithm

works and messages are numbered. For example 1e
means sending "election" message in the step 1 and 3Mc
means sending "M-coordinator" message in the step 3 and
22C means sending "coordinator" message in the step 22.
As we described, we have 3 step here that is wheeling this
massages:

a)"election" message(in the Pm ring and subsequently
in the subrings)

b)"M-coordinator" message (in the Pm ring)
c)"coordinator" message (in the Pm ring and

subsequently in the subrings). so number of messages and
latency are as below:

Number of messages = (m+n)+m+(m+n) => O(m+n)

For computing the overall latency we have to compute it
in the last subring:

1- receiving "election" message from the Pm ring and
forwarding it to the infomer through subring = (m)+(n/m)
2-"M-coordinator" returns back to the informer and last
comparison take place (m comparisons takes place) =
latency in step one+m
3- informer starts wheeling a "coordinator" message after
steps one and two that is (m+n/m)+(m).
4- "coordinator" message returns back to the infomer
through subring after step 3= (2m+(n/m)) + (m+n/m)

So latency = 4(m)+2(n/m)=> O(m+(n/m))

Now assume that more than one process (each one is

denoted by Pcrash) detect that coordinator is crashed. It
can lead in overhead, latency or even unconsistency; for
solving this problem, each Pm that has received "election"
message from more than one informer follows this rules:

a. Each informer starts sun ring algorithm only

towards the first Pcrash and kills "election"
messages after that.

b. Each Pm that has started sun ring algorithm as
informer, will kill other informer's messages and
sends received information to the biggest informer
through Pm ring.

c. In the rule b, only when we have new informations
sending operation will take place.

Figure 3. Sun(1) ring algorithm(u=16)

5. Sun(n) ring Algorithm

Now we can extend and use this method again and
again till internal ring's length is greater than u (Assume
that we use a fix constant(u) in divisions). each time we
divide the internal ring (iTH ring), new ring(Ri+1) and
subrings(sRi) will be made. Each subring from ring i has
u nodes of ring i and with connecting division points (end
points of a ring's subrings) we have next internal
ring('i+1'TH ring) that its length is: Li+1=(Li)/u

9951003

For example assume that first division length (L1) is
128 and u is 4 then next divisions will have this lengths
(number of connections): L2 =64, L3=16, L4=4. as you
see, in this case each L is an exponent of u.

Figure 4. Sun(2) ring algorithm(u=4)

In the following we have extended this method once

more(Sun2) with a fix constant in divisions. Here the
number of nodes in iTH ring is dentoted by Li. Below you
can see an example. In the figure 4, first we have a ring
with 64 points(L1=64), then we use constant 4 for making
division that will reult a ring with 16 nodes (L2=16). Note
that in the figure 3 our constant (u) is 16. Again we divide
the internal ring (with 16 node) and make a ring with 4
nodes(L3=4). As you see, now it is look like the sun.

Assume that wheel(X,Y) means wheeling message "X"
in the "Y" and sRi means subrings of iTH ring and Ri
means iTH ring. Steps are :

a) wheel(election, R3)
b) wheel(election, R2)
c) wheel(election, R1)
d) wheel(M-coordinator, R3)
e) wheel(coordinator, R3)
f) wheel(coordinator, R2)
g) wheel(coordinator, R1)

As you see we have 8 steps here and in sun(n) when
we have r rings(r=n+1), number of messages and latency
can be computed as below (according sun(2)):

Number of messages = (L3 + L2 + L1) + L3 + (L3 + L2
+ L1) = 2(L3+L2 +L1)+L3

So number of messages = LL r

r

i
i +∑

=1
*2 , Li=L/u^i

Here we have to pass three messages (election, M-
coordinator, coordinator). Assume that node "a" is an
informer and messages are passing clockwise. Most

latency will be seen in the last parts. So for computing the
average time we have this steps:

Step 1:
1- "election" message returns back to the Point "a" after

wheel(election,R3)+ wheel(election,sR2)+
wheel(election,sR1) = L3 + u + u =>Lr+(r-1)*u

Step 2:
2- "M-coordinator" message returns back to the Point "a"

after passing step one and (L3) comparison
=2*(L3)+2u. =>2*L3+(r-1)*u

Step 3 (after maximum time between step one and
two):
3- Point "a" will wheel "coordinator" message in all of

the rings that is latency in step two+L3+2u
=3*(L3)+4u =>3*(L1/(u^m))+2*(r-1)*u.

so latency = 3*(L1/(u^m))+2*(r-1)*u

Here we reduced latency. Note that in the bully

algorithm all of the processes that have bigger number of
P[i], send their information to the P[i], but in the sun ring
algorithm only next and previous nodes in the ring or
subrings communicate with informer. so we have less
number of collisions towards the bully algorithm (when
number of processes is large and i is a small number).

6. Divided ring Algorithm

Now we want to relax the "duplex link" assumption.
In this algorithm we have a node as informer that can
inform some points of the ring and improve ring
algorithm's speed. In the figure 5 an informer with 4 point
is shown.
This algorithm works as below:

a) Each node that has detected crashing of the

coordinator, wheels "election" message in the main
ring (like the original ring algorithm)

b) Each node that is a point of informer and has detected
the crashing or received the "election" message, send
"crash" message to the informer.

c) Informer informs its points (division points) with
sending "election" message to all of its points

d) Each point that has received the "election" message
and is not down, will send a reply back to the
informer.

e) If informing received more than one reply, it sends a
"divide" message to the associated points.

f) Each point that has received the "divide"
message(denoted by Di), if it has not sent "election"
message yet, now it wheel this message in its subRing.

g) Each Di that has received election message, kills this
message and gives this information to the informer.

h) When informer gets information of all Di's, it will
select the best one according received informations

9961004

and will send a "coordinator" message (with new
coordinator number) to all of the Di's.

i) Each Di wheels this "coordinator" message in its
subring, so all of the ring nodes will know about new
coordinator.

As you see number of steps (since informer is

informed about crashing) is 7, and after sending "divide"
message; latency and messages are: (Assume that number
of points is P, number of points that are not down is D and
number of ring nodes is L1)
Message =D+(L1)+D+D+(L1) ≅ 3D+2 *(L1)
Time = 1+(L1/D)+1+1+(L1/D) = 3+(2 *(L1)/D)

Figure 5. Divided(1) ring algorithm(u=4)

Figure 6. Divided(2) ring algorithm(u=4)

We can use this algorithm again and divide the
subrings too. In general two rounds of message passing
must be executed. in the figure 6 it is shown that how a
message wheels in the partitions according d(2) ring
algorithm (e.g. wheeling "coordinator" mesage).

For better performance and less collisions we can
make divisions with different lengths or use backoff time
strategy that is each node before sending its message have
to wait for a random time and then it can send.

Note that with this algorithm we has reduced number
of collisions towards bully algorithm. But it will be
usefull for a ring with high number of nodes. otherwise
collisions and subsequently latency will increase.

The interesting part of this algorithm is that; if
informer is down, original ring algorithm will be done and
with using informer, we just try to improve ring
algorithm's speed.

Assume that we have a constant number in division
(u) that specify our partition numbers and original ring's
length is L1 so each time we are dividing a ring or a
subring into u parts. So with first division we have u
subrings (partitions) that each one have (L1/u) length
(L2=L1/u). In the second division we have u partition in
each part that each one have L2/u length. In another word
now we have u^2 part that each one have L1/(u^2) length.
Ignoring collisions the division process can continue till
partition length is big enough and division improves the
performance. So in mTH division :

Lm = L1/(u^m)
Number of partitions = u^m
Number of messages for making u partitions = u-1
Number of messages = two round of maessage passing;
first for wheeling "elction" message and the second one
for wheeling "coordinator" message
≅ 2 L1+3 (u^m)
Latency=m+Lm+m+m+Lm=3m+2Lm=3m+2*L1 / u^m

We can use a combination of sun and divided ring
algorithms too. For example in the divided ring algorithm
in the step m and p we can wheel the "election" and
"coordinator" messages in the related subrings using sun
technology. It is shown in the figure 7.

Figure 7. A combination example

7. conclusion

This paper gave you a good vision about leader
election algorithms and designing issues. Now depending
on your condition, you can design the best architecture.
For example now you know that in the small networks,
bully algorithms is the best one.

However if you have a ring network, you choose the
ring algorithm and if your network is vast and has a lots
of nodes, considering number of collisions and depending
on the conditions like position of nodes, the distance
between them and duplexing of the links you can use one
of the above algorithms or a combination of them. Below

9971005

you can see a conclusion of this paper and a comparison
between leader election algorithms:

Table 1. A comparison between leader election
Algorithms

 messages Latency

Bully O(n) 3

Ring O(n) O(n)

S(n) LL r

r

i
i +∑

=1
*2

, Li=L/u^i

3*(L1/(u^n))
+
2*(r-1)*u

D(n) 2 *L1+3 (u^n) 3n+2*(L1/(u^n))

Table 2. Computed number of Messaes and

latency
With
64
nodes

Assumption messages Latency

Bully
first P[32] detects
that coordinator is
crashed

128
 3

Ring --- 128 128

S(1)

We have 4
division
points(Pm)
u=4

176 64

D(1)

We have 4
division
points(Pm)
u=4

140 36

S(2) u = 4 172 28

D(2) u=4 176 14

7. References

[1] S. Tanenbaum; M. V. Steen, “DISTRIBUTED

SYSTEMS: Principles and Paradigms”, 2e, Prentice
Hall, Inc, 2007

[2] EffatParvar, Mehdi; Effatparvar, MohammadReza;
Bemana, Akbar; Dehghan, Mehdi,” Determining a
Central Controlling Processor with Fault Tolerant
Method in Distributed System”, ITNG apos;07, 2-4
April 2007 Page(s):658 – 663.

[3] Heutelbeck, D.; Hemmje, M,” Distributed Leader
Election in P2P Systems for Dynamic Sets”, MDM

2006. 7th May 2006 Page(s): 29 – 29.

[4] Francis, P.; Saxena, S, “Optimal distributed leader
election algorithm for synchronouscomplete network
”,TENCON apos;98., 1998 Page(s):86 - 88 vol.1

[5] Sudarshan Vasudevan; Brian DeCleene; Neil
Immerman; Jim Kurose; Don Towsley, “Leader
Election Algorithms for Wireless Ad Hoc Networks”,
DARPA Information Survivability Conference and
Exposition, April 2003 Page(s): 261 - 272

[6] Neeraj Jaggi; K. Gopinath, “Verification of a Leader
Election Algorithm in Timed Asynchronous
Systems”, FSTTCS 2001, Page(s): 207-218

[7] E.H. Kim; J. K. Kim, “A leader election algorithm in

a distributed computing system”, FTDCS 1995,
Page: 481 .

[8] Zargarnataj, M, “New Election Algorithm based on

Assistant in Distributed Systems”, AICCSA 2007,
May 2007 Page(s):324 – 331.

[9] Sung-Hoon Park, “A Probabilistically Correct

Election Protocol in Asynchronous Distributed
Systems”, Springer Berlin , Heidelberg, 2003.

[10] Sung-Hoon Park; Yoon Kim; Jeoung Sun Hwang,

“An efficient algorithm for leader-election in
synchronousdistributed systems”, TENCON 99,Dec
1999 Page(s):1091 - 1094

[11] Attiya, H., Welch, J.: Distributed Computing,

Fundamentals, Simulations, and Advanced Topics.
McGraw-Hill Publishing Company, UK 1998.

[12] Kumar V., Grama A., Gupta A. and Karypis G,

”Introduction to Parallel Computing”, The Benjamin/
Cumminy Publishing Company Inc, Redwood City
California. 2003.

9981006

