
J Comput Virol
DOI 10.1007/s11416-010-0142-4

ORIGINAL PAPER

Improving antivirus accuracy with hypervisor assisted analysis

Daniel Quist · Lorie Liebrock · Joshua Neil

Received: 14 December 2009 / Accepted: 11 March 2010
© U.S. Government 2010

Abstract Modern malware protection systems bring an
especially difficult problem to antivirus scanners. Simple
obfuscation methods can diminish the effectiveness of a scan-
ner significantly, often times rendering them completely inef-
fective. This paper outlines the usage of a hypervisor based
deobfuscation engine that greatly improves the effectiveness
of existing scanning engines. We have modified the Ether
malware analysis framework to add the following features
to deobfuscation: section and header rebuilding and auto-
mated kernel virtual address descriptor import rebuilding.
Using these repair mechanisms we have shown as high as
45% improvement in the effectiveness of antivirus scanning
engines.

1 Introduction

The modern scourge of malware is greatly exacerbated by
the effective protections that are placed around the malicious
files. These protections, referred to as packers or software
armoring, regularly confound antivirus detection software.
In the latest AV Comparatives proactive retrospective tests,
it was found that detection was substantially less than ideal
[2]. The result for the best vendor was 69%, while the lowest
was 14%, for detection of new viruses. The average detec-
tion rate for new threats was only 42%. In private testing,
Damballa, Inc. [9] showed that overall detection rates were

D. Quist (B) · L. Liebrock
New Mexico Tech, Socorro, USA
e-mail: dannyquist@gmail.com

D. Quist · J. Neil
Los Alamos National Laboratory, Los Alamos, USA

J. Neil
University of New Mexico, Albuquerque, USA

very similar. A similar study has shown that while the overall
number of samples is increasing in a super-linear manner, the
families or underlying code bases of the malware grow in a
much slower manner [11].

The explanation of this increase can be attributed partially
to the malware author’s easy access to defense systems. With
these systems in hand, the antivirus sample can be easily
modified to subvert detection [8]. A study by Gutmann [15]
showed that malware authors are selling copies of their tools
that are guaranteed to subvert antivirus for a certain num-
ber of signature updates. The customer can choose the num-
ber of updates, which are sold in a subscription manner. In
practice, these modifications are fairly trivial to implement
but extremely complex to detect correctly.

The obfuscation problem is difficult to address. A proof
showing that the obfuscation problem is Turing complete has
been shown [27]. This tells us that there is no way to generi-
cally tell when a program is completely unpacked. This work
gets around this problem by using a heuristic to determine
tell when a program is likely to be unpacked. It was shown
that there exists a set of modifications to make the detection
of any virus in the domain of NP-Complete problems [6].
This creates problems for antivirus vendors trying to detect
new and virulent strains among existing families.

It is with this motivation that we began our research
in covert analysis and monitoring systems. If we can sub-
vert the protection mechanisms and bypass the defenses of
the malware, we can increase the effectiveness of existing
detection software dramatically. We do not try to defini-
tively detect the completion of the unpacking process, but
apply a further set of heuristics to better determine the
contents of the original executable. Dinaburg et al. [10]
showed that it is possible to monitor a program without
detection using Ether. This technique opened the door to a
range of analysis techniques. Paleari et al. [23] reinforced

123

D. Quist et al.

the need to avoid detection by implementing instruction
fuzzing for emulated CPUs. This supports identification of
a large set of instructions that can be used to determine the
type of emulator being used, as well as the version being
used. An emulator will have a difficult time generating a
bug-for-bug equivalent set of instructions. The advantage
of running on raw hardware is that these variations can be
ignored.

The generalized method discussed by Josse for unpacking
and repairing an executable requires a number of steps [18]:

1. Find the original entry point
2. Perform consistency checks within the section headers
3. Rebuild the import address table (IAT)
4. Rebuild the relocation table

Using the view of a completely unmodified yet still instru-
mented system allows for interesting new analysis. First, it
requires that any introspection into the system observe the
computer’s running state at the time of infection. To imple-
ment this, we read and parse portions of the Windows kernel
data structures through the Ether API. This provides several
improvements over existing analysis systems: Not making
modification to the running system either in the userspace or
kernel space of the system makes detection much more dif-
ficult. Second, many modifications used to subvert analysis
are specifically targeted at the internal monitoring features
of Windows. Using the kernel objects to infer characteristics
improves the reliability. At some point the program’s decep-
tions have to allow it to actually execute. Finally a level of
safety can be assured using a complete VM based solution.

This paper makes several contributions: we demonstrate
the methods necessary to repair dump files through a
hypervisor controlled system. We then provide new origi-
nal entry point detection techniques as they are applied to
hypervisors. Finally, we contribute a new method of harvest-
ing the imported APIs by reading the virtual address descrip-
tors from the Windows kernel data structures. Each of these
techniques expands on those established in [10,18,22,27]
by altering the techniques to work inside of a fully hardware
virtualized environment. Our primary goals are to improve
detection of viruses through traditional antivirus software
and improve manual reverse engineering.

The paper is organized as follows. We begin with a dis-
cussion of related work in Sect. 2. Section 3 discusses the
mechanisms of hypervisor analysis used. Continued in that
section are the methods of repairing memory dumps, accu-
rately detecting the original entrypoint, and rebuilding the
import tables using the kernel virtual address descriptors.
Next, we discuss our testing methodology in Sect. 4 and the
results in Sect. 5. We end with the conclusion and an overview
of future work.

2 Related work

Automated unpacking is a well tread topic. PolyUnpack
monitors each instruction as it is traced through the modified
QEMU section [27]. Each instruction is decoded until a data
section is reached. Renovo takes a different tactic of using a
fully emulated environment to monitor execution [19]. Mem-
ory writes are tracked in such a manner as to keep a collection
of “dirty” memory regions. At the granularity of every basic
block, Renovo checks to see if a memory write has occurred.
Upon execution inside of this memory region the executable
is extracted and written to disk. Ether uses a method similar
to PolyUnpack but leverages to the Intel hypervisor hard-
ware to implement a covert monitoring system [10]. It uses
a method similar to Renovo, but works at a memory block
level. In Ether, once execution is seen in one of these areas, it
generates a candidate dump of the executable from memory
without modifying any of the components.

OllyBonE uses a method similar to that of Sparks and
Butler [28] to detect memory writes [29]. OllyBonE’s detec-
tions occur inside of OllyDbg and require manual interac-
tion. Saffron operates similarly to OllyBonE but removes the
debugger component and adds a dynamic translation com-
ponent [25]. This allows Saffron to resolve addresses at the
instruction granularity as opposed to the page boundary in
OllyBonE. Josse [18] uses the QEMU system to implement
granular monitoring of executables to enable manual human
analysis. Detection of the OEP by Josse uses a binary dif-
ferencing method to detect execution that differs in memory
versus that on disk. If the two instructions do not match,
this is marked as the OEP of the suspected program. Import
reconstruction consists of monitoring the execution of the
program and watching for known API calls.

When validating each of the previously mentioned tech-
niques, most did not address the proper repairing of execu-
tables. None of them corrected or attempted to fix the OEP
detection, other than to provide a large set of possible can-
didates. It is with this motivation that we attempt to address
these problems.

3 Hypervisor based analysis

Traditionally malware analysis has occurred using off-
the-shelf components such as VMWare or Microsoft’s Virtual
PC. These virtual machine products use a trap-and-emulate
technique for maintaining the separation between guest and
host operating systems. This provides a fast management
interface, but suffers from detectability. The primary reason
for detectability using this method is the Intel architecture’s
inability to virtualize correctly [26]. Ferrie [12] described
techniques in which it was possible to detect all of the pop-
ular virtualization products. The root of all these problems

123

Improving antivirus accuracy with hypervisor assisted analysis

is that each of these virtualization systems lack a perfect
bug-for-bug emulation of the Intel CPU instruction set. Find-
ing a way to maintain undetectability vastly improves the
ability of malware to detect it is being instrumented [13].

The advent of modern hardware based virtualization has
traditionally been used as a method of optimizing the use of
hardware for servers. While the performance improvements
of these hardware platforms have been challenged [5], the
ability of Ether to hide itself has been significantly improved
[10]. Our work uses the Ether framework. Ether extends the
functionality of the Xen hypervisor system by adding the
ability to monitor application events at a per-instruction level.
Ether provides several methods to monitor a running execut-
able: instruction tracing, API tracing, and a generic unpacker
detector. In testing, we have found that most malware is
unable to detect the presence of the hardware virtualizations.

No virtualization system is completely undetectable.
In testing we find that viruses do not currently detect the
presence of Ether. The Intel hardware virtualization system
(VMX) was created to allow the Intel CPU to manage mul-
tiple operating systems on a single CPU. The seminal work
by [26] showed that the original implementation of the Intel
IA-32 architecture did not support virtualization. There have
been many ways to get around this limitation. For exam-
ple, QEMU has been shown to be a very popular choice for
code instrumentation. However, each virtualization system
has been shown to be detectable [12]. Hardware virtualization
has been shown to be detectable by analyzing covert chan-
nels [20]. While each of these systems can be detected, we
prefer Ether for a few reasons. First, Ether is an open project
with source code readily available. Second, assembly code
is executed on an actual Intel CPU, instead of being emu-
lated. Many of the single-instruction virtualization detection
methods are effective because virtualization systems don’t
emulate the Intel architecture bug for bug [24]. Finally, we
prefer Ether as it is a supported hardware method for evading
detection. As new techniques are added, it is possible to sub-
vert them by adding more handling code. This creates addi-
tional overhead, but still preserves the system integrity. The
underlying operating system was a very good design decision
by the Ether developers.

After reducing the detectability of the monitoring system,
the next step is to repair the executable to improve analyis.
We add portable executable (PE) repair functionality to the
unpacker. The first result is fewer false-negatives from com-
mercial antivirus scanners. Second, common reverse engi-
neering tools such as IDA Pro are able to load and parse the
file for manual analysis.

3.1 Repairing portable executables

The portable executable (PE) format is the binary format used
by Microsoft’s Windows platforms. Normally this contains

Fig. 1 PE File and Memory Layout Differences

the information that is needed to run a program. It contains
the imported APIs, the memory usage requirements, execut-
able code, and data for the executable. Some of the earliest
obfuscations for software abused the optimizations of the
Windows loader’s handling of the PE format. The method
used to dump the executable is to take the starting address
pointed to by the ImageBase field in the optional header. This
copying process does not produce the original pre-obfuscated
version but rather the in memory view of the file. This allows
for manual reverse engineering and analysis.

In order to prepare an executable for analysis, a couple of
steps must be performed. First, there is a difference between
the memory layout of a PE on disk versus in memory. During
execution the program will need temporary memory storage
for its stack. This is defined at runtime and does not have
actual data prior to load time. To accommodate this and to
save space in the actual executable, Windows allows for a
post-load execution space to be created without including
it in the file. Figure 1 illustrates this size difference. These
spaces show up as sections that have a section size of an
arbitrary amount and a raw size of zero. Memory in a loaded
executable is also aligned on cache boundaries to increase
performance. This has the overall effect of creating a differ-
ent view of the file in memory and on disk.

We fix the executable using the following steps: first, iter-
ate over all the section headers. At each section header, the
size of data on disk is set to be the size of the data in mem-
ory. Second, the virtual pointers are updated to point to the
area in memory where they would exist. Since the Windows
loader places all of the information in the correct place at
runtime using a relative virtual address, the dumped data will
match the memory. The side effect of this technique is that
the dumped executable is much larger than the original. This
is mitigated by the fact that the data can now be analyzed.
The final step is to fix the original entry point.

123

D. Quist et al.

Input: Set of all executed Instructions and Operands

Output: Set of all candidate OEPs

OEP s = {};

for each Executed Instruction and modified address do

if Addr [] > 0 then
OEPs += ;

end

else

if then
Addr[]+=1;

end

end

end

return OEPs;

Fig. 2 Generic unpacking algorithm

3.2 Original entry point detection

The original entry point (OEP) is the address of code of the
program prior to obfuscation by a packer. This address is
critically important as it gives a starting point for all of the
analysis of the original code. With an incorrect original entry
point, IDA Pro will not be able to find and parse all of the
executable instructions within a program. When a packer
is applied to a program the entry point for the program is
replaced with the packer’s address. Finding the OEP can be
difficult to impossible, based upon the packers obfuscation
methods.

A standard algorithm exists and is used by various auto-
matic unpackers to find the original entry point [10,19,25,
27]. The basis of this algorithm is to keep a hash table of
all addresses where a memory write has occurred. When an
execution is detected in one of these address spaces, this is
marked as a candidate OEP. This algorithm is detailed in
Fig. 2.

While this algorithm will identify candidate OEPs, it can
produce a large number of unpacked files. The number varies
depending on the unpacking algorithm. Table 1 shows the
number of candidate OEPs generated by various packers.
The primary indicator of how well the algorithm will per-
form is based upon how many times the self-modified code
is executed. In packers such as MEW or FSG, the code is
re-executed many times before finally executing the original
entry point code. One solution to this problem is to ana-
lyze each file individually based on the number of candidate
OEPs. This can be tedious if performed manually, and due to
the expansive nature of some packers, it can generate an exh-
orbitant amount of data. We chose to modify this unpacking
process to limit the total number of candidate dump files.

Table 1 Number of candidate OEPS by packer using the algorithm in
Figure 2

Packer Detected OEPs

Armadillo 1

Petite 1

UPX 1

UPX Scrambler 1

Aspack 2

FSG 2

Pecompact 2

PEPack 12

VmProtect 12

Asprotect 15

Themida 33

Yoda 43

PEX 133

MEW 1018

3.2.1 Stack based OEP detection

The modification we make to our algorithm is to take the
very last candidate OEP generated and perform a stack based
analysis. Since candidate OEPs are generated in execution
order, the last one will have a function stack. The stack
inside a running executable contains the return address, argu-
ments, and local variables for a running program. In a nor-
mally compiled executable, this creates a trail of crumbs
that will lead to the original executable. We start by look-
ing at the current value of the base pointer ebp and load the
offset where the return address exists. To verify the return
address is correct, we simply check to see if the address is
within the executable’s address space. Analyzing the return
address should yield a call instruction if a standard program
call frame exists. Upon finding this return address we con-
tinue the process until there is a non-valid memory address.
A non-valid memory address will either be an address out-
side of the executable’s loaded memory addresses, or a bogus
value (such as null). The very last address in this chain is
very close to the beginning of the original OEP. To find the
first address we disassemble each instruction previous to the
current one until we get a junk instruction. The last valid
instruction is then marked as the new OEP. This method
has been used as a debugging technique [4] as well as a
reverse engineering tool for security researchers [7]. Our use
of this technique is to make an educated guess about the
top of the call stack and the beginning of the code for each
call.

The method is effective for a couple of reasons. First, most
packers implement unpacking code in a method that either
abuses or does not use the standard stack framing system.

123

Improving antivirus accuracy with hypervisor assisted analysis

Fig. 3 Visualization of the Netbull Virus Protected with the Mew Packer

Second, the packers usually do not share the same section as
the original code. This is illustrated in Fig. 3 where sections
are distinguished by a transition between large numbers of
nodes of the same color. Each vertex of the code represents
a basic block of execution of the program. Basic blocks con-
sist of all assembly operations that are contained between
two adjacent branching operations.

3.2.2 Visualization of unpacking

The colors represent the areas, of memory the basic blocks
represent. Red indicates execution in a section with high
entropy. Most packers and obfuscators are able to com-
press an executable such that it has a uniform distribution
of data. Areas of high entropy inside of the original exe-
cutable indicate where the program has transitioned to the
unpacked portions of the executable. Green is execution into
non-existent code sections; if the executed instruction is non-
existent in the on-disk executable, this indicates that the
code is generated dynamically or is self-modifying. These
data areas commonly allocated are dynamically allocated
in heap space, such as that returned by malloc. Light pur-
ple shows execution where a section exists on disk, but
not in the run-time executable. This is most often found
when data is allocated in the PE section headers, but not
used until runtime. Neon green shows instructions that dif-
fer between the in-memory and on-disk executables. This
is another sign that points to execution of self-modifying
code.

Until the executable runs in the light purple section, there
is no clear stack structure. The algorithm from Fig. 2 would
trigger a memory dump when the program reaches the green
areas. The final area, the light purple section, is the final
unpacked version of the code. This is where an actual call-
frame system will be setup and represents the area with the
original entry point. Figure 4 highlights these areas with a
zoomed view of the unpacking loop from Fig. 3.

Fig. 4 Zoomed view of the packer loops from figure 3

3.2.3 Verification

To verify the effectiveness of this technique, we took an
unmodified, unprotected copy of the Netbull and made note
of the entry point: virtual address 0x0040bb08. We then
packed the sample with the UPX, Aspack, Asprotect, Mew,
Pex, Yoda, PEPack, VmProtect, FSG, Themida, and Arma-
dillo packers. To verify that the packers worked correctly
we ran the files and verified that the virus executed and per-
formed its usual tasks. We then ran an instruction trace on
each packed file as well as the unpacking process. To val-
idate the OEP detection we simply verified that the entry
point detected by the unpacking code matches the address
we recorded previously. Of the fourteen packers we tested
all OEPs were found correctly.

123

D. Quist et al.

3.3 Virtual address descriptor import rebuilding

When final unpacking is completed and a program is being
extracted from memory the next step is to rebuild the imports.
Several tools exist to perform this task inside of a run-
ning Windows systems [14,21,27]. These implementations
are designed to use the native Windows API. However, this
method is flawed, as it requires tools to run in the guest oper-
ating system. Many viruses can actually detect the presence
of these analysis tools and modify their behavior. A com-
pletely separate system is needed to extract the information
through the hypervisor.

Our contribution builds upon the techniques discussed by
Josse [18]. Specifically we adapt it for use inside of Ether’s
hypervisor environment. Analysis and modification of ker-
nel data structures for malware analysis is not new. Josse
discussed parsing kernel structures for recovering imported
data. We add a new system based on parsing the internal Win-
dows Virtual Address Descriptors (VAD). This allows for the
resolution of API calls to the actual DLL. This is discussed
in Sect. 3.3.3.

The generalized process to rebuild the imports is as
follows.

1. Identify the API calls in the executable code.
2. Find the location of the import address table.
3. Determine the dynamic link library (DLL) of each

imported API.
4. Add the newly reconstructed import address table to the

executable.

It was necessary to alter steps 1 through 3 in order to
function inside of a hypervisor environment. Our contribu-
tion provides a technique to extract the relative data from the
guest via the hypervisor.

3.3.1 Identification of API calls in executable code

Identification of API calls is performed in two steps. First
we monitor all execution and log the address of the program
counter (PC) in order to track execution of the program. When
we see an execution that is outside of the executable’s address
space, we check for execution in an imported module. The
first address after this transition is the first address in the
imported module API. The module API is parsed and then
translated into a format needed for the Import Address Table.

Our technique has the advantage of finding APIs that
are obfuscated by the packer. Other import rebuilders do
not resolve this indirection and will miss hidden or obfus-
cated API calls. This technique suffers from the problem
of not being able to find unreferenced or unexecuted API
calls. To address this deficiency we use a method from
OllyDump and PolyUnpack to look for any indirect call or

jmp instructions [14,27]. Scanning through all of the execut-
able code sections, we can scan for the two byte code repre-
sentation of these indirect calls. These indirect calls will first
point to the loaded module’s import address table (IAT) and
then finally point outside the base executable code address
space to the DLL. The IAT will contain a listing of all of the
modules and APIs imported by the program at runtime. It is
an ordered table that is populated with the destination API
addresses inside of an imported dynamic link library (DLL).

3.3.2 Finding the import address table

The IAT is a critical piece of the puzzle to rebuild the imports.
The table consists of a listing of addresses imported by each
DLL and contains a listing of virtual addresses for each of
the destination DLLs. These are the actual locations in the
mapped DLL space that can be used to derive the character
name for each function. The derivation of the actual names
is performed by the inspection of the kernel virtual address
descriptors (VADs) for each process.

Finding the beginning of the IAT is necessary to rebuild
the complete set of imports. Each time an API is found using
the method in Section 3.3.1, we traverse the list of imports
in reverse until we find a null DWORD indicating the begin-
ning of the list. This address is then compared to the lowest
previously found candidate for the IAT. If the value is lower
than the previous one, it is replaced. This address is used
to populate an internal data structure containing the ordered
listing of DLLs and the APIs imported by them for use in
sect. 3.3.4

3.3.3 DLL API identification

Previous methods use the internal Windows APIs to resolve
an address to a particular DLL. Invoking this API is not pos-
sible from the hypervisor so we must replace it. Our con-
tribution adds the technique of parsing the Windows kernel
memory management data structure in order to recover the
DLL and API information for rebuilding.

Viewing and validating the import information through
the process VADs is important for several reasons. First it
provides a runtime view of the data that is loaded for the pro-
cess. Many times an executable will obfuscate the locations
of this information in the process memory space. Since the
VADs are used to populate the page tables and page directo-
ries, this information will contain the correct information for
a running process. Using the kernel data structures also lets us
target the appropriate areas to parse DLL information from.
Given that PE files have the same representation on disk as
they do in memory, our parsing follows a similar format.

The structure of a virtual address descriptor is a binary tree
of the addresses. Every time an address is noted or logged we
walk the VAD tree to find the appropriate descriptor. Figure 5

123

Improving antivirus accuracy with hypervisor assisted analysis

Executable Memory Space
R

in
g-

0
A

dd
re

ss
 S

pa
ce

0x00000000

Process VAD Tree

PEB (FS:30)

WS2_32.DLL

KERNEL32.DLL

ImageBase

…

ImageBase

ADVAPI32.dll

WS2_32.DLL.Data

Process Virtual Address Descriptor Tree
R

in
g-

3
A

dd
re

ss
 S

pa
ce

Fig. 5 Relationship of the VAD with process memory

illustrates the layout and relationship to the process memory.
This descriptor contains a module path name which is either
the executable or an imported DLL. The DLL then contains
an export table which is used to extract the name of the API.

To recover the particular VAD for a process, we parse
the kernel process execution block. An addition to Ether
allows for logging of this important area of kernel memory
on each instruction execution in the modified environment.
The VAD is not modified during this logging process. When
the unpacking process is complete (discussed in Sect. 3.2),
this virtual address table is used to discover each of the DLL’s
and API’s belonging to the process.

To recover the API from the running process, Ether’s
read_from_guest API is called to extract the information.
Each DLL contains an export listing of all the APIs it pro-
vides. DLLs will be mapped into the program’s running pro-
cess space by virtue of the import process. Since DLLs are PE
files and the PE file maps itself into memory, we can extract
and record each of the API entries. To do this, we first take the
address of the indirect call and verify it is outside the image
space of the running process (this is computed by adding
the ImageBase with the SizeOfImage variables). Once we
have the image base, we traverse the VAD tree looking for
the range of memory that matches the running API address.
From here we match the calculated offset of the file with the
DLL’s export table to find the name of exported function. If a
text name for the executable is not present in the DLL, we use
the ordinal value described in the Microsoft PE specification
[1]. This is noted and inserted into a linked list of imported
functions in the executable.

3.3.4 Rebuilding the newly constructed IAT

To repair the import table we add another section to the
executable. This section contains the new import directory
for the running program. We take our linked list of APIs, as
well as the observed import address table, and use that to build

a named list of imports. These are written out of the execut-
able to disk during the completion of the process dumping.

Import obfuscation sometimes varies from the traditional
methods. One example is the PE scrambler by Nick Harbour
[17]. The obfuscation used in this technique creates a central
dispatch point by which to hide the destination information.
To address this type of attack, we use a second process mon-
itoring method to rebuild the import tables. In the course
of the execution of our program, we watch for executions
outside of the executable’s image base. If this data is tracked
to memory that is mapped by a DLL, we can say that this is an
API call. From here we build up an observed IAT containing
the log of all the calls seen. Tools in the class of PEScram-
bler modify the base code to point to the API dispatcher.
We simply change the instructions back to their original call
structure using the IAT entry.

The combination of these techniques provides a robust
method to reconstruct most import obfuscation techniques.
Manual reverse engineering often begins with an analysis of
the API calls. Malicious software will need to invoke these
routines in order to affect change on the infected system.
Having this information pre-built and reassembled allows
for quicker analysis. Antivirus detection is also increased as
import data is used to improve detection heuristics.

4 Testing and analysis

Our testing methodology consists of three strategies. First,
we test using a collection of Linux virus scanners for samples
that are detected by exactly one vendor. Second, we perform
the same analysis on freshly collected samples. Finally, we
take the samples from the two previous tests, wait 2 weeks,
and test them against the latest updates from 40 antivirus
scanners.

To begin testing, we took four antivirus programs which
would run in the Linux operating system. We updated all
of their signatures to the latest versions, and updated the
software to the latest revisions. We then scanned our entire
repository of 500,000 samples to randomly extract 1,000
samples with poor detection results. We define a sample as
poorly detected if it is only found by exactly one antivirus
scanner. The second test was to take a whole day’s worth
of freshly collected malware. These samples were collected
via honeypots, web harvesting systems, and from malware
trading networks. Finally to test the overall effectiveness, we
allowed 2 weeks to pass and submitted all of the samples
(consisting of 1,693 samples) to VirusTotal [3], a website
which aggregates results from 40 virus scanners. This test
allowed us to see what the detection improvement was after
each of the vendors had been given a chance to develop new
signatures. Each of the submitted samples were then executed
to verify they showed malicious behavior.

123

D. Quist et al.

To verify a file was malicious, we looked for three distinct
characteristics. First, each of the samples was analyzed to
show successful execution. This means that there were no
observed crashes or unrecoverable problems with the sam-
ple. The second test was to validate that the viruses were
modifying the state of the running system in some manner.
To determine this state modification we took a baseline of
the system before and after execution. We looked for added
registry keys, modified files, and additions to startup systems.
Finally, we verify a process is running correctly by looking
for system calls made by the application. To make the deter-
mination that a sample is malicious, we look for any detection
by any antivirus software. These tests validate, as much as
possible, that the program runs and exhibits behavior consis-
tent with that of a generic execution of a malicious program.

Our verification method reduced the original 1,000 sam-
ples down to 697 and resulted in 1,195 total samples for a
single day of collection.

In order to implement the test, we set up a Windows XP
Service Pack 2 virtual machine image to run inside of the
Xen/Ether environment. To automate the unpacking process
we enable file sharing, create a new account with admin-
istrative privileges, and start the virtual machine normally.
The system is configured with a static IP address with no gate-
way in order to limit the network traffic to that generated in
a locally confined network. Furthermore we isolate the Ether
system behind a switch with no external network access.
To speed up the start-up of the virtual machines, we cre-
ate a ramdisk containing the original clean disk image.
To analyze the file we then take the following steps:

1. Copy the cached clean virtual machine image to the run-
time location

2. Start the VM inside the Xen system
3. Copy the executable to a writable network share on the

system
4. Start Ether monitoring of the program
5. Execute the program using the Winexe program[16]
6. Wait 5 min to allow the program to run

The 5 min wait time was chosen as a good trade-off in
efficiency of unpacking and thoroughness of the unpacking
system. While there are samples that will not be correctly
analyzed in this timeframe, our testing has shown 90% will
be unpacked.

After this process has ended, the results will be a set of
copies of the executable from the running program memory.
Each of these files are scanned by the antivirus scanners.
We define improvement as the difference in detection rates
before and after unpacking.

Finally we omit the names of the antivirus programs in
all tests. Since we are looking for improvement in antivi-
rus scanner performance, the individual scanner is not the

primary concern. Given the sensitive nature of calling out
antivirus vendors, we defer to other sources (such as AV
Comparatives [2]) for a much more thorough job ranking
of individual scanning effectiveness and performance. Such
rankings are not the intended goal of this paper.

5 Results and analysis

The results from the scanning process were very positive. Out
of each of our tests outlined in Sect. 4, we showed improve-
ment across all scanners. The selection of samples that were
detected by only one scanner showed the most improvement.
The highest improvement of all the scanners was 45.23%.
The average improvement in this area was 19.86% and the
lowest improvement was 0.68%. The newer samples from
a single day of freshly collected malware showed improved
scanning as well. The average improvement across all scan-
ners was 7.37%, with the highest being 12.54% and the low-
est at 1.70%. Finally the delayed scanning with 40 scanners
showed a lower, but still improved testing result. The highest
improvement in this test was 11.5%. The average improve-
ment was 1.37%, and the lowest improvement was 0%.

The total detection rate of all the pre-analyzed malware
samples was 66.78%. After the hypervisor analysis and repair
the average was 67.73% detection. Each of the samples in our
single-day collection was detected by one or more scanners.

The highest value improvement was shown in the same
day tests. Such samples are threatening networks on a daily
basis. The total detection average of all the vendors in this
area is about 67%. The single day improvement average of
7.37% shows that more threats can be successfully identified.

After 2 weeks, the scanner developers have had time to
develop new signatures for the threats. It is difficult for any
vendor to be able to detect all threats. The worst scanner
showed an 11.50% improvement. This is important to note
as our tool allows better coverage of the new viruses invading
systems.

Figure 6 shows the total detection rates for all the sam-
ples submitted to VirusTotal, a mass scanning website, after a
2 week delay. The detection rates from Fig. 7 show the relative
improvement after our unpacking process has been applied.
A higher score indicates that the our processing improves the
results. A low score can indicate a couple of outcomes. First,
the signatures for a particular scanner do not include an ade-
quate detection mechanism for a sample of malware. To get
an idea of whether this occurs, we can analyze the improve-
ment graph (Fig. 7) and the total detection graph (Fig. 6).
Scanners J, U, Y, AF, and AH all have low improvement
scores. When looking at the total detection rates, each of
these scanners score well below the 50% mark. It is reason-
able to conclude that these scanners do not have signatures
for these particular malware samples. Second, each of the

123

Improving antivirus accuracy with hypervisor assisted analysis

Fig. 6 Total detection rates after 2 weeks submitted to VirusTotal. Blue is the detection rate before unpacking and red is the detection rate after.
The results include 40 scanners

Fig. 7 Percentage improvement over all samples scanned by Virustotal after 2 week period. These results include 40 scanners

scanners has had 2 weeks to develop signatures for the
samples we provided. These viruses were collected from
well-known sources that share with members of the anti-
virus community. Thus 2 weeks allows for thorough devel-
opment of both signatures and improvements to unpacking
engines. Our unpacking mechanism shows improvements in
just 5 min. Our technique exploits the fact that newer mal-
ware families do not appear as often as new obfuscation tech-
niques. We leverage our improved unpacking technique to
modify the malware into a form that is detected by antivirus
signatures.

Figure 8 shows another way of looking at the data. In this
graph the top bars denote the maximum improvement for
each of the tests. The bottom shows the minimum improve-
ment. 50% of the data is contained in the colored boxes.
The space between the top of the box and the maximum
mark is where the upper quartile is contained. Similarly the
space between the bottom of the box and the minimum is
where the bottom quartile is located. The dark line inside
each of these boxes indicates the median improvement. The
best improvement was among samples detected by at most
one scanner, denoted P in the graph. S shows the testing

performed on a single day, while VT shows the average
results from the 2 week delayed VirusTotal test. Each of these
indicate an average improvement. Overall each of the tests
show the improvement is weighted towards the lower values.

In each of the tests, improvement was shown. The highest
rate of success was seen in the poorly detected samples test.
The samples in this test were not necessarily current; some
existed for several months before this test was performed.
Antivirus companies place higher value on tracking current
threats as they are the ones with the greatest effect on their
customers. Older samples do not tend to get as much atten-
tion as the newer threats. The vendors will have a signature,
but may not have a method of deobfuscating each of the
packers. Removing these protections will allow the existing
signatures to match the samples more reliably.

6 Future work

Several improvements can be made upon this work. First, we
would like to address the performance considerations of the
unpacking process. Currently our method is to let the sample

123

D. Quist et al.

0
10

20
30

40

P S VT

Fig. 8 The y axis shows the percentage improvement for all unpacking
methods. The x axis contains labels for each of the test types. P denotes
detection improvement for poorly detected samples (only one scanner
detection) with Linux AV scanners, S is samples from a single day
with Linux AV scanners, and all samples submitted to Virustotal after
2 weeks are listed under VT

execute for 5 min. We would like to explore other methods
for determining whether a sample has been unpacked. Inte-
gration of the visualization and manual reverse engineering
would allow for better control of the unpacking process.
Finally, we would like to integrate Ether with several existing
debugging frameworks such as OllyDebug, WinDBG, and
IDA Pro’s built-in debugger.

7 Conclusion

We have applied a new unpacking method for improving
malware detection to hypervisor based analysis. First, we
discussed the section and file repairs. Second, we showed a
technique for recovering the original entry point using data
harvested from dynamic analysis. Finally, we present a new
method for rebuilding import information, while preserving
the isolation of the infected host. These improvements were
then measured against three different scenarios: A poorly
detected set of malware, fresh malware collected on a sin-
gle day, and total detection from 40 different virus scanners
after 2 weeks. For each of these tests, our tool decreased the
effectiveness of obfuscations used by malware authors. Thus
we provide an improved defensive mechanism to aid in the
protection of network resources.

Acknowledgments This work was partially funded by NSF Scholar-
ship for Service grant DUE-0313885. The authors would like to thank
Curt Hash, Mike Fisk, Peter Silberman, Alex Kent, Alex Brugh, and
Scott Miller for their help with this research.

References

1. Microsoft portable executable and common object file format
specification. Specification Document, March 2008. http://www.
microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

2. Antivirus Comparatives - proactive/retrospective test (on demand
detection of virus/malware). Online Report, November 2009.
http://www.av-comparatives.org/comparativesreviews/main-tests

3. Hispasec Systems, Virustotal: Free online virus and malware scan.
Company Webpage, November 2009. http://www.virustotal.com/

4. Manually walking a stack. Webpage, November 2009. http://msdn.
microsoft.com/en-us/library/cc267826.aspx

5. Adams, K., Agesen, O.: A comparison of software and hardware
techniques for x86 virtualization. In: ASPLOS-XII: Proceedings
of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 2–13. ACM,
New York, NY, USA (2006)

6. Borello, J.-M., Mé, L.: Code obfuscation techniques for metamor-
phic viruses. J. Comput. Virol. 4, 211–220 (2008)

7. Cachaalany, E.: An attempt to reconstruct the call stack.
Hex-Rays Blog, September 2009. http://hexblog.com/2009/09/
an_attempt_to_reconstruct_the.html

8. Christodorescu, M., Jha, S.: Testing malware detectors. In: Pro-
ceedings of the 2004 ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA 2004), pp. 34–44. ACM
Press, Boston, MA, USA (2004)

9. Damballa. Risk calculator. Company Webpage, November 2009.
http://www.damballa.com/overview/risk.php

10. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: Malware anal-
ysis via hardware virtualization extensions. In: Proceedings of
the ACM Conference on Computer and Communications Security
(CCS) (2008)

11. Eckelberry, A.: The growth of malware. Blog Post (Jan. 2008).
http://sunbeltblog.blogspot.com/2008/01/growth-of-malware.
html

12. Ferrie, P.: Attacks on virtual machine emulators. Symantec
Advanced Threat Research Whitepapers (2007)

13. Ferrie, P.: Anti-unpacker tricks - part one. Virus Bulletin (2008)
14. Gigapede, Ollydump 2.21. Webpage (2009)
15. Gutmann, P.: The commercial malware industry. In: Defcon 15,

Las Vegas, NV (2007)
16. Hajda, A.: Winexe. Online Download, November 2009. http://eol.

ovh.org/winexe/
17. Harbour, N.: Advanced software armoring and polymorphic

kung-fu. In: Defcon 16, Las Vegas, NV (2008)
18. Josse, S.: Secure and advanced unpacking using computer emula-

tion. J. Comput. Virol. (3), 221–236 (2007)
19. Kang, M.G., Poosankam, P., Yin, H.: Renovo: A hidden code

extractor for packed executables. In: Proceedings of the 5th ACM
Workshop on Recurring Malcode (WORM) (2007)

20. Lauradoux, C.: Detecting virtual rootkits with cover channels. In:
Proceedings of the 17th EICAR Conference, Laval, France, EICAR
(2008)

21. MackT, Import reconstructor 1.7, March 2008, http://www.
woodmann.com/collaborative/tools/index.php/ImpREC

22. Martignoni, L., Christorescu, M., Jha, S.: Omniunpack: Fast,
generic, and safe unpacking of malware. In: Proceedings of the
2007 Computer Security Applications Conference, pp. 431–441.
Miami Beach, FL, USA (2007)

23. Martignoni, L., Paleari, R., Roglia, G.F., Bruschi, D.: Testing CPU
emulators. In: Proceedings of the 2009 International Conference
on Software Testing and Analysis (ISSTA), pp. 261–272. ACM,
Chicago, IL, USA (2009)

24. Paleari, R., Martignoni, L., Roglia, G.F., Bruschi, D.: A fistful
of red-pills: how to automatically generate procedures to detect

123

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://www.av-comparatives.org/comparativesreviews/main-tests
http://www.virustotal.com/
http://msdn.microsoft.com/en-us/library/cc267826.aspx
http://msdn.microsoft.com/en-us/library/cc267826.aspx
http://hexblog.com/2009/09/an_attempt_to_reconstruct_the.html
http://hexblog.com/2009/09/an_attempt_to_reconstruct_the.html
http://www.damballa.com/overview/risk.php
http://sunbeltblog.blogspot.com/2008/01/growth-of-malware.html
http://sunbeltblog.blogspot.com/2008/01/growth-of-malware.html
http://eol.ovh.org/winexe/
http://eol.ovh.org/winexe/
http://www.woodmann.com/collaborative/tools/index.php/ImpREC
http://www.woodmann.com/collaborative/tools/index.php/ImpREC

Improving antivirus accuracy with hypervisor assisted analysis

CPU emulators. In: Proceedings of the 3rd USENIX Workshop on
Offensive Technologies (WOOT), ACM, Montreal, Canada (2009)

25. Quist, D., Smith, V.: Covert debugging: Circumventing software
armoring. In: Blackhat USA, Las Vegas, NV (2007)

26. Robin, J.S., Irvine, C.E.: Analysis of the intel pentiums ability to
support a secure virtual machine monitor. In: Proceedings of the
9th USENIX Security Symposium, Denver, CO (2000)

27. Royal, P., Halpin, M., Dagon, D., Edmonds, R., Lee, W.:
PolyUnpack: Automating the Hidden-Code Extraction of Unpack-
Executing Malware. In: ACSAC, pp. 289–300 (2006)

28. Sparks, S., Butler, J.: Raising the bar for windows rootkit detection.
Phrack, 11(63) (2005)

29. Stewart, J.: Ollybone: Semi-automatic unpacking on ia-32. In:
Defcon 14, Las Vegas, NV (2006)

123

	Improving antivirus accuracy with hypervisor assisted analysis
	Abstract
	1 Introduction
	2 Related work
	3 Hypervisor based analysis
	3.1 Repairing portable executables
	3.2 Original entry point detection
	3.2.1 Stack based OEP detection
	3.2.2 Visualization of unpacking
	3.2.3 Verification

	3.3 Virtual address descriptor import rebuilding
	3.3.1 Identification of API calls in executable code
	3.3.2 Finding the import address table
	3.3.3 DLL API identification
	3.3.4 Rebuilding the newly constructed IAT

	4 Testing and analysis
	5 Results and analysis
	6 Future work
	7 Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

