
A History-Based Job Scheduling Mechanism for the Vector Computing Cloud

Yoshitomo MURATA
Cybersciecnce Center

Tohoku University
Sendai, Japan, 980-8578

murata@sc.isc.tohoku.ac.jp

Ryusuke EGAWA
Cybersciecnce Center

Tohoku University
Sendai, Japan, 980-8578
egawa@isc.tohoku.ac.jp

Manabu HIGASHIDA
Cybermedia Center
Osaka University

Osaka, Japan, 567-0047
manabu@cmc.osaka.ac.jp

Hiroaki KOBAYASHI
Cybersciecnce Center

Tohoku University
Sendai, Japan, 980-8578

koba@isc.tohoku.ac.jp

Abstract—The wide-area vector meta computing infrastruc-
ture named a vector computing cloud has been proposed as
a next generation high-performance computing infrastructure.
However, in the vector computing cloud, the difference in site
policies between organizations causes inefficient usage of vector
computing resources. To achieve fairness and efficient job
scheduling on the vector computing cloud, this paper presents
a history-based job scheduling mechanism for a queue system.
The proposed mechanism estimates the time to start the job
execution in a queue system from the history of job-execution
on vector supercomputers. Based on the estimation, the job
scheduling mechanism automatically allocates the job to an
appropriate site, which can execute the job earlier.

The simulation results show that the proposed job scheduling
mechanism improves the utilization efficiency of vector com-
puting resources, compared to the conventional round-robin
scheduling mechanism. In addition, the experiment using a
prototype of the vector computing cloud indicates that the
proposed job scheduling mechanism has enough potential for
transparently executing jobs between the two SX-9 systems.

Keywords-Job Scheduling, Grid Computing, Cloud, HPC

I. INTRODUCTION

The current high performance computing (HPC) appli-
cations require ever-increasing computational power. To
execute such an HPC application on existing computing
resources, one way can conceive to make co-operation
among distributed supercomputers by GRID technologies.
However, a grid environment still forces HPC users to
consider available computing resources to running huge and
massively parallel HPC applications. In the conventional
distributed HPC systems, users should select an appropriate
site to execute their codes and submit HPC jobs directly by
themselves [1].

Recently, the cloud computing attracts a great deal of
interest as a new generation IT infrastructure. Although
there are many definitions of the cloud computing [2],
[3], the cloud computing is the internet-based computing
in the broad sense. In the cloud computing, the resources,
infrastructures and software are provided as a cloud service
through the internet. Here, these cloud services are virtu-
alized, and the cloud users need not attend to the actual
resources and infrastructures. So, an HPC service provided
by the cloud computing, which is called a HPC cloud,
is seen as a high possibility to execute massive parallel
applications [4], [5]. In the HPC cloud, users would not

have to care where their jobs should be operated since the
supercomputers are virtualized as a huge single system and
jobs are automatically assigned to appropriate sites.

In [6], the wide-area vector supercomputing environment
named a vector computing cloud has been proposed as one
of HPC cloud systems. The vector computing cloud realizes
a single-sign-on for multiple vector computing systems by
virtualizing vector computing resources. However, the vector
supercomputers which make up the vector computing cloud
employ different job execution policies. The difference in
the policies makes job scheduling on the vector computing
cloud complicated, and it causes inefficient usage of vector
computing resources. To overcome this problem, this paper
proposes a history-based job scheduling mechanism for the
vector computing cloud.

The organization of this paper is as follows: Section II
describes the vector computing cloud and its job scheduling
problems. Section III introduces a job scheduling mech-
anism of the vector computing cloud. In Section IV, the
performance of the proposed job scheduling mechanism is
discussed. Section V concludes this paper.

II. THE VECTOR COMPUTING CLOUD

A. System Overview
Aiming at realizing the HPC cloud with vector supercom-

puters, the wide-area vector meta computing infrastructure
named a vector computing cloud has been proposed. A
prototype system of the vector computing cloud consists
of two nodes of SX9 vector supercomputers. Each node is
located at Tohoku University and Osaka University with a
distance of 800km [6].

The vector computing cloud has been designed based on
the NAREGI Grid Middleware [7]. The vector computing
cloud consists of multiple sites with vector supercomputers,
each of which has several components of NARGI Grid
Middleware: Portal, User and Virtual Organization Mem-
bership Service (UMS/VOMS), Information service (IS),
Super Scheduler (SS), and GridVM for SX. Portal provides
a web interface of the virtualized system, and UMS/VOMS
authenticates the users and servers. IS manages the resource
information of each site with gathering utilization statuses.
IS also communicates with IS’s in other sites to share uti-
lization statuses. SS searches computing resources for user
requests, and schedules jobs based on the information from

2010 10th Annual International Symposium on Applications and the Internet

978-0-7695-4107-5/10 $26.00 © 2010 IEEE

DOI 10.1109/SAINT.2010.43

108

2010 10th Annual International Symposium on Applications and the Internet

978-0-7695-4107-5/10 $26.00 © 2010 IEEE

DOI 10.1109/SAINT.2010.43

125

2010 10th Annual International Symposium on Applications and the Internet

978-0-7695-4107-5/10 $26.00 © 2010 IEEE

DOI 10.1109/SAINT.2010.43

125

2010 10th Annual International Symposium on Applications and the Internet

978-0-7695-4107-5/10 $26.00 © 2010 IEEE

DOI 10.1109/SAINT.2010.43

125

2010 10th Annual International Symposium on Applications and the Internet

978-0-7695-4107-5/10 $26.00 © 2010 IEEE

DOI 10.1109/SAINT.2010.43

125

IS. Reservation Cache Service (RCS) performs as a global
scheduler among each site. RCS aggregates and controls the
requests from SS’s to find out an appropriate site to execute
a job. GridVM for SX is a virtual machine for a SX vector
supercomputer, which performs synchronization control of
vector computing resources in the site, and provides mete-
computing environments based on high affinity with a local
job scheduler [8]. GridVM for SX keeps high compatibility
with the local job scheduler NQS II [9] on the SX-9.

B. Job Scheduling Problem on The Vector Computing Cloud
In the vector computing cloud, each supercomputer has

their own job execution policy. Then, the execution of a
job submitted to the vector computing cloud also complies
with the policy of allocated site. The difference in the
policies makes job scheduling on the vector computing
cloud complicated. In the prototype system of the vector
computing cloud, SX-9 nodes at Osaka University employ
a reservation system for job executions, and the execution
time of jobs is limited. This reservation-based operation
guarantees the time when a job execution starts (job-start
time). Thus, the job-start time can easily be obtained by
checking a reservation map of the system. On the other
hand, SX-9 nodes at Tohoku University employ a queuing
system for job execution in a FIFO manner and the system
does not limit the execution time of jobs. The queuing-
based operation allows running large scale jobs with no time
limitation and provides the high-utilization of computing
resources without reserving and allocating excess resources
for small-size jobs. However, this queuing-based system
cannot guarantee job-start time, because the execution time
of jobs in a queue is undetermined.

From the viewpoints of users, the vector computing cloud
should execute a job as soon as possible from the time that
user submitted a job. However, if a scheduler in the vector
computing cloud that consists of computing resources with
different job operating policies could not understand job-
start times of both job execution systems, the scheduler
can not allocate a submitted job to a computation resource,
which can execute the job earlier. Therefore, to achieve
such a job scheduling on the vector computing cloud,
estimating the job-start time in the queuing-based system
plays important role.

III. JOB SCHEDULING FOR THE VECTOR COMPUTING
CLOUD

To overcome the job scheduling problem mentioned in
the previous section, this paper proposes a job scheduling
mechanism which estimates the job-start time in a queuing-
based system and allocates a job to an appropriate site in
the vector cloud computing environment. Figure 1 shows
the overview of the proposed job scheduling mechanism.
The job scheduler consists of original NAREGI modules;
SS and Reservation Map, and newly added SS’s sub-module
named resource select module. The resource select module
is invoked by SS, and estimates a job-start time from the
history of job-execution on vector supercomputers.

GridVM GridVM

IS ISSS SS

Job Execu!on

Informa!on

SS/RCS

Reserva!on

Map

Resource

Select

Module

Resource

Select

Module

site #0 site #1

Job Execu!on

Informa!on

Job Alloca!on
Job Alloca!on

Reserva!on

Map

Job

Scheduler

Job

Scheduler

Figure 1. Overview of the Job Scheduler

A. Estimation of Job-start Time for a Queuing-based System
To estimate the job-start time for a queuing-based system,

we focus on the high software reusability in HPC. For
example, a parameter sweep experiment, which is one of the
famous HPC jobs, executes one program with many different
paramerters. Then, it is easy to estimate the execution time
of the program by using the previous execution result.

We use a job-execution time of a job in a queue for a job
scheduling in the vector computing cloud. The job-execution
time indicates a required period to process the job. If we
can obtain the job-execution time, we can also estimate job-
start time by summing up job-execution time in the queuing-
based system. By comparing the job-start time in a queuing-
based system and that in a reservation-based system, the
scheduler can assign the job to an appropriate site, which
can execute the job early.

The scheduler records and archives job execution infor-
mation to estimate the job-start time of the following jobs.
When a job execution is completed, Grid VM sends the
job execution information to IS. IS stores the information
in a database, and provides an databese access interface to
SS. Then, SS can obtain the job-execution time based on
the job name, job type, and the user account information.
The resource select module obtains the job-execution time
in a queue by using the job information accumulated in the
database of IS.

The process to obtain the job-execution time in a queue by
the scheduler is described as follow. First, the resource select
module accesses Grid VM, and obtains a list of queued jobs.
Note that these jobs are not executed, and the job-execution
time has not been decided yet. Next, the resource select
module retrieves the execution time of all jobs in the queue
from IS. In this process, the resource select module uses the
command name as the search key, and retrieves the execution
time of the corresponding job which has the same command
name. If the resource select module cannot obtain the job-
execution time from the database of IS, the resource select
module uses the average job execution time accumulated in
IS. Finally, by adding all job-execution time in the queue,
the resource select module estimates the job-start time for
all jobs in the queuing-based system.

B. Job Allocation Mechanism on The Vector Computing
Cloud

The job submitted by the user is allocated to a computa-
tion resource by SS. This subsection describes the processes

109126126126126

Time

Reserved Reserved Reserved

Job #1 Job #2

job-start !me un!l resource has not

been reserved

job-start !me in a queue

Reservation based site

Queuing based site
candidate !me-slot

for alloca!ng a new job

Not
Reserved

Figure 2. Job Allocation among a Reservation-based Site and a Queuing-
based Site

of job allocation on the vector computing cloud.
First, SS obtains a list of computation resources, which

satisfy the requirement of the job such as the number of
processers, memory capacities and so on. Next, to select an
appropriate resource from the list of computation resources,
SS calls the resource select module.

Figure 2 shows a situation for selecting an appropriate one
from the queuing-based site and the reservation-based site to
allocate a new job. The resource select module obtains the
job-start time of a queue in the queuing-based site and the
reservation-based site. The job-start time of the reservation-
based site can be obtained from the reservation map. Then,
the resource select module compares the job-start time of
the queuing-based site with that of reservation-based site,
and allocates the new job to the computing resources which
can execute the job earlier. In Figure 2, the resource select
module allocates the new job to the reservation-based site
because the reservation-based site becomes ready to execute
the new job earlier than the queuing-based site.

IV. PERFORMANCE EVALUATIONS

A. Simulation Analysis

To evaluate the performance of the proposed job schedul-
ing mechanism, the vector computing cloud environment
composed of two queuing-based sites is modeled and simu-
lated.

This evaluation uses six kinds of jobs, and the job-
exetution times of all jobs are generated in the gamma
distribution with the averages (µ) and the standard deviation
(σ) shown in Table I. The six kinds of jobs are generated
with zipf’s law [10]. By using the zipf’s law, many small-
jobs and few large-jobs are generated in the simulation.
The zipf’s law can be applied to many natural and social
phenomena, and this evalueation assumes the zipf’s law
as a real HPC user’s workload. In the initial phase of
the simulation, thirty jobs are sequentially submitted to the
vector computing cloud. Then, thirty jobs always exist in
the vector computing cloud while simulation is executed. To
evaluate this situation, whenever one job execution has been
finished, a new job is generated and submitted. The proposed
job scheduling mechanism and the round-robin scheduling
mechanism used in the NAREGI Grid Middleware are
evaluated. These simulations are carried out until 1,000,000
simulation seconds, and the period from the submission time
to the start time of a job(waiting-time), and the number of

Table I
SIMULATION PARAMETERS

Parameter Name Value
average execution time of 100, 200, 400, 800, 1600, 3200,

each job (µ) [sec] 6400, 12800, 25600, 51200
standard deviation of each job (σ) 11

Table II
SUMMARY OF SIMULATION RESULTS

Proposal Round-Robin
number of executed jobs 3,914 3,458

average of waiting-time [sec] 7,131 8,085
maximum of waiting-time [sec] 81,464 94,113

standard deviation of waiting-time 6,477 10,368

jobs which is completed are measured. The evaluated results
are obtained by taking the average of twenty simulations.

Table II summarizes the simulation results. From this
result, the proposed job scheduling mechanism improves
the number of executed jobs and reduces the average and
maximum waiting-time. The standard deviation of waiting-
time shows that the waiting-time of jobs scheduled by the
proposal concentrates on the average, but the waiting-time
of jobs scheduled by round-robin is distributed over the wide
region.

Figure 3 shows the histograms of the waiting-time. The
horizontal axis indicates the waiting-time of jobs, and the
vertical axis is the number of jobs that are within the
waiting-time. Figure 3 shows that some jobs scheduled by
the round-robin scheduler have been executed as soon as
it is submitted. Because of the simulation condition that
thirty jobs are always allocated to two sites, a case of
the waiting-time being zero indicates the situation that all
jobs are allocated to the one site, and no job is allocated
to the another site. The round-robin scheduling makes the
load-imbalance among two sites, and only a part of the
entire computing power in the vector computing cloud is
utilized. This load-imbalance by the roud-robin scheduling
causes the low number of executed jobs in Table II. On
the other hand, the proposed job scheduling mechanism can
provide the fair waiting-time for all jobs and eliminate the
load-imbalance among two sites. Then, the proposed job
scheduling mechanism improves the utilization efficiency of
the computing resources in the vector computing cloud.

B. System Test

The effectiveness of the job scheduler is also evaluated by
using a prototype system of the vector computing cloud. Jobs
with different job-execution time are successively submitted
to the prototype system in keeping with the “submission
order” in Table III. The sequence of jobs consists of three
kinds of applications, and their execution times are set to 30
(small), 40 (middle) and 200 (large) seconds, respectively.

The job allocation results are confirmed by a portal site as
shown in Figure 4. In this screenshot, the first row indicates
allocated jobs to Tohoku University’s site and the second row
indicates those of Osaka University’s site. The horizontal

110127127127127

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5

N
u

m
b

e
r

o
f

Jo
b

s
w

it
h

in
 a

 c
e

rt
a

in
 w

a
it

in
g

-t
im

e

Waiting Time [x 103 sec]

Proposal

Round-Robin

Figure 3. Histogram of Waiting-time (1,000 second intervals)

Help

434_DIC234_DIC

CID_433 CID_435 CID_436 CID_437 CID_438

Jobs in Each Site

sxinfo.isc.tohoku.ac.jp

gridvms0.hpc.cmc.osaka-u.ac.jp

TopPage | Submit New Job | Queue Status | Server List | JobList | Logout |

Login as:

w20530

From :

..***.***

Link

Cyberscience Center
Cybermedia Center
NAREGI Project
NEC

©2009 Research Division on Supercomputing System, Tohoku University

Figure 4. Portal site page : result of job scheduling

axis is the time sequence. In this result, after job CID 434
which has the longest execution time is allocated to Tohoku
University, the job-start time of Tohoku University becomes
much longer than that to Osaka University. As a result,
the jobs CID 435 - CID 438 are sequentially allocated
to Osaka University to make quick response to users and
reduce the imbalance of job-start time between both sites.
From the results, the job scheduler can well estimate the
execution time of each job, and select the appropriate site to
execute the job as early as possible in the vector computing
cloud that consists of computing resources with different job
operating policies.

V. CONCLUSIONS

This paper has presented a job scheduling mechanism
for a queuing-based system in the vector computing cloud.
The proposed job scheduling mechanism obtains the job-
start time in a queuing-based system from the history of
the job-execution times, and automatically allocates a job to

Table III
LIST OF SUBMITTED JOBS

Submission Order Job ID Job Size
1 CID 432 small
2 CID 433 middle
3 CID 434 large
4 CID 435 middle
5 CID 436 small
6 CID 437 small
7 CID 438 small
8 CID 439 middle

an appropriate site, which can execute the job earlier. The
experiment results indicate that the proposed job scheduling
mechanism has enough potential for transparently operating
jobs between the two SX-9 systems with coexistence of
conventional jobs and cloud jobs. As a result, the proposed
job scheduling mechanism contributes to the achievement of
the HPC cloud.

In our future work, we will evaluate and discuss the per-
formance when the number of sites becomes three, four or
more. Next, to execute the wide-area MPI application among
the queuing-based system and the reservation-based system,
we will implement a co-allocation mechanism based on
the proposed job-start time estimation method. In addition,
improving the estimation accuracy of the job-start time for
the queuing-based system is needed to achieve more efficient
job execution. For this end, we will analyze the logs of the
job-execution at the supercomputer centers, and establish a
more accurate estimation method.

VI. ACKNOWLEDGMENTS

The author would like to thank the reviewers for their
useful comments. This work is partially performed as the
CSI program of National Institution of Informatics. The
author would like to extend our thanks to the members
of the Center of GRID Research and Development (NII),
and Kenji Oizumi, Eiichi Ito of Cyberscience center Tohoku
University, and Masa-aki Yamagata, Norio Kamiyama, Hi-
ronobu Konno of NEC Corp. for their help to implement the
prototype system .

REFERENCES

[1] The Globus Alliance. http://www.globus.org/.

[2] A. Weiss. Computing in the clouds. netWorker, 11(4):16–25,
2007.

[3] B. Hayes. Cloud computing. Communications of the ACM,
51(7):9–11, 2008.

[4] B. Sotomayor, K. Keahey, and I. Foster. Combining batch
execution and leasing using virtual machines. In HPDC ’08:
Proceedings of the 17th international symposium on High
performance distributed computing, pages 87–96, New York,
NY, USA, 2008. ACM.

[5] B. Sotomayor, R. Montero, I. Llorente, and I. Foster. Virtual
infrastructure management in private and hybrid clouds. IEEE
Internet Computing, 13:14–22, 2009.

[6] R. Egawa, M. Higashida, Y. Murata, and H. Kobayashi.
Prototyping of a vector meta-computing environment. In
International Symposium on Grid Computing 2010, 2010.

[7] Center for Grid Research and Development. National research
grid initiative pages. http://www.naregi.org/ index e.html.

[8] M. Higashida. High Performance Computing on Vector
Systems 2009, chapter The Grid Middleware on SX and Its
Operation for Nation-Wide Service, pages 109–119. Springer
Berlin Heidelberg, 2009.

[9] Toshiyuki Kitagawa, Shoichi Hasegawa, and Akihiro Ya-
mashita. Job scheduling function nqs ii for sx-6. NEC
technical journal, 55(9):50–53, 2002/9.

[10] George K. Zipf. Human behavior and the principle of least
effort. Addison-Wesley, 1949.

111128128128128

