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Motion camouflage in a stochastic setting

K. S. Galloway, E. W. Justh, and P. S. Krishnaprasad

Abstract— Recent work has formulated 2- and 3-dimensional
models and steering control laws for motion camouflage, a
stealthy pursuit strategy observed in nature. Here we extend the
model to encompass the use of a high-gain pursuit law in the
presence of sensor noise as well as in the case when the evader’s
steering is driven by a stochastic process, demonstrating (in the
planar setting) that motion camouflage is still accessible (in the
mean) in finite time. We also discuss a family of admissible
stochastic evader controls, laying out the groundwork for a
future game-theoretic study of optimal evasion strategies.

I. INTRODUCTION

Motion camouflage is a stealthy pursuit strategy which
relies on minimizing the perceived relative motion of a
pursuer as observed by its prey. The phenomenon of motion
camouflage has been biologically documented for visual
insects in [16] and in [11] (based on [2]), mathematically
characterized (e.g., [4]), and recently analyzed as a determin-
istic feedback system [9], [13]. Furthermore, a geometrically
indistinguishable strategy has been shown to be used by
certain echolocating bats intercepting prey insects [3]. The
analysis of a feedback law for motion camouflage has been
performed in both the planar ([9]) and three-dimensional
settings ([13]), using the machinery of curves and moving
frames [1]. Close parallels have been shown to exist between
motion camouflage (which is rooted in biology), and the
Pure Proportional Navigation Guidance (PPNG) law for
missile guidance [12], [15]. That motion camouflaged pursuit
appears in such diverse contexts has motivated more detailed
study of such aspects as sensory feedback delays [14], and
the stochastic formulation presented in the present work.

Previous work in [9] and [13] made use of natural Frenet
frames [1] to describe the particle trajectories and develop
models for the pursuer-evader interaction in a deterministic
setting. In this paper we make use of the planar model
to investigate the impacts of stochasticity such as sensor
noise and evader controls driven by random processes. In
the biological setting, we consider possible connections with
organisms that appear to use stochastic control processes,
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such as the “run-and-tumble” movement exhibited in bac-
terial chemotaxis (see, e.g., [17]). Many species of bacteria
use this type of stochastic steering control, which we model
as a continuous time, finite state (CTFS) process driven by
Poisson counters. (See Section V). Other types of erratic
evasion maneuvers utilized by a variety of insects, birds
and fish are discussed in [5]. In the vehicular setting, we
note possible applications in areas such as aircraft-missile
interactions, considering the possibility that some type of
stochastic evasive maneuver may in fact prove most effective
against an inbound weapon. (We do not consider such issues
in the current paper but plan to address the game-theoretic
problem in future work.)

We proceed by sketching the planar pursuit-evasion model
as well as some of the fundamentals of motion camouflage
and the motion camouflage proportional guidance (MCPG)
feedback law derived in [9]. In Section III we consider the
effects of sensor noise, and in Section IV we address motion
camouflage with a stochastically steering evader, stating and
proving a proposition that the MCPG law will still ensure
attainment of motion camouflage in the mean in finite time.
After presenting some specific forms of admissible stochastic
controls in Section V and simulation results in Section VI,
we conclude by discussing directions for future work.

II. MOTION CAMOUFLAGE MODEL

Our starting point is the deterministic planar motion
camouflage model described in [9]. A generalization of
this deterministic planar model may be found in [13], and
the analysis presented here can be generalized to three
dimensions using the same techniques. Because here we wish
to focus on the novel stochastic elements being introduced
into the motion camouflage model, we restrict discussion
to the planar setting. Also, to streamline the discussion we
assume constant-speed motion and no sensorimotor feedback
delays.

A. Trajectory and frame evolution

To keep the discussion as self-contained as possible, we
reiterate the basic planar motion camouflage formulation of
[9]. Particles moving at constant speed subject to continuous
(deterministic) steering controls trace out trajectories which
are C?, i.e., twice continuously differentiable. Without loss
of generality, we may assume that the pursuer particle moves
at unit speed, and the evader particle moves at speed v > 0
(i.e., v corresponds to the ratio of speeds of the pursuer and
evader).

1652



46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007

e

Fig. 1. Illustration of the trajectories and natural Frenet frames for the
planar pursuer-evader engagement. (Figure from [9].)

The motion of the pursuer is described by

rp = Xp,
Xp = YplUp,
Yp = —XplUp, (D

and the motion of the evader is described by

Fe = UXe,
Xe = VYele,

Ye = —VUXcUe, (2)

where the steering control of the evader, u., is prescribed,
and the steering control of the pursuer, u,, is given by a
feedback law. The orthonormal frame {x,,y,}, which is the
planar natural Frenet frame for the pursuer particle, evolves
with time as the pursuer particle moves along its trajectory
(described by r,). Similarly, {x¢,y.} is the planar natural
Frenet frame corresponding to the evader particle. (In the
planar setting, the natural Frenet frame and the Frenet-Serret
frame coincide; however in higher dimensions the distinction
is critical [1], [8].)

Here we assume v < 1, so that the pursuer moves faster
than the evader. Figure 1 illustrates (1) and (2). (As noted in
[9], the controls u. and u, are actually acceleration inputs
since they directly drive the angular velocity of the particles.
However, the speed for each particle remains constant since
the acceleration inputs are constrained to be applied perpen-
dicular to the instantaneous direction of particle motion.)

B. Definition of motion camouflage

In this paper we focus on “motion camouflage with respect
to infinity”, the strategy in which the pursuer maneuvers in
such a way that, from the point of view of the evader, the
pursuer always appears at the same bearing. This is described
in [9] as

rp =T+ Argg 3)

where ro, is a fixed unit vector and A is a time-dependent
scalar. We define the “baseline vector” as the vector from
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the evader to the pursuer
r=ry,—re, 4)

and |r| denotes the baseline length. Restricting ourselves to
the non-collision case (i.e. |r| # 0), we define w as the vector
component of r which is transverse to r, i.e.

w:f_("-r>". )
|r| x|

It was demonstrated in [9] that the pursuit-evasion system
(1),(2) is in a state of motion camouflage without collision
on a given time interval iff w = 0 on that interval.

C. Distance from motion camouflage

The function

I‘_jt|r|_<r I"> ©)

d Tl Tl
|2 x| x|

describes how far the pursuer-evader system is from a state
of motion camouflage [9], [13]. The system is in a state of
motion camouflage when I' = —1, which corresponds to
pure shortening of the baseline vector. (By contrast, I' = 0
corresponds to pure rotation of the baseline vector, and I' =
+1 corresponds to pure lengthening of the baseline vector.)
The difference I' — (—1) > 0 is a measure of the distance of
the pursuer-evader system from a state of motion camouflage.

For (6) to be well defined, we must have |r| > 0 as well
as |f| > 0. The former requirement is satisfied by assuming
that |r| # O initially, and then analyzing the engagement
(for finite time) only until |r| reaches a value rq > 0 [9],
[13]. The latter condition is ensured by the assumption that
0<v<l1,since | >1—v.

D. Feedback law for motion camouflage

We define the notation g to represent the vector q rotated
counter-clockwise in the plane by an angle 7/2 [9], [13].
When there is no delay associated with incorporating sensory
information, we define our feedback law as

waf) o

where 11 > 0 is a gain parameter [9], [13]. However, if there
is a delay 7 in the incorporation of sensory information, then
we substitute u,(t — 7) for u, in equation (1).

Observe that (7) is well defined since, by the discussion
in the previous subsection, |r| # 0 during the duration of
our analysis.

E. Deterministic analysis

The key results for the deterministic motion camouflage
feedback system are presented in [9], [13]. These results,
particularly the planar result in [9], are the inspiration for
the calculations below in Section IV.
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III. SENSOR NOISE

One way to introduce stochasticity into the motion cam-
ouflage system is through sensor noise [9]. Figure 2, which
is taken from [9], illustrates how sensor noise can be incor-
porated.

In figure 2(a), the dashed dark line is the evader trajectory
and the solid dark line is the corresponding pursuer trajectory
under control law (7), but with noisy measurements. An
R2-valued independent identically-distributed (iid) discrete-
time Gaussian noise process with zero mean and covariance
matrix diag(c?, 02), o = .15|r|, is added to the true relative
position r at each measurement instant. Similarly, an R2-
valued iid discrete-time Gaussian noise process with zero
mean and covariance matrix diag(52,52), ¢ = .15|f|, is
added to the true relative velocity I at each measurement
instant. These two measurement processes are then used by
the pursuer to compute (7). The position measurements are
superimposed on the true trajectory of the evader, and it can
be seen that the absolute measurement error decreases as
the relative distance |r| becomes small. In this simulation,
the gain p = 1, the measurement interval is approximately
.5 time units (during which a constant steering control wu,
is applied), the pursuer moves at unit speed, and the total
simulation time is approximately 1500 time units.

Figure 2(b) shows the corresponding cost function I'(¢)
given by (6), plotted as a function of time. The difference
between I'(¢) and —1 measures how far the system deviates
from a state of motion camouflage. Part of this deviation
is due to the noisy measurements, and part is due to the
maneuvering of the evader (because the gain p is finite).

IV. STOCHASTICALLY STEERING EVADER

A. SDE for T’

Let us now suppose that u, is not a deterministic function
of time, but is instead driven by a stochastic process (in
a way we will make precise later). Then r and r are also
stochastic processes, as is I' given by (6). Analogous to the
calculation of T given in [9], we can derive the following
SDE (Stochastic Differential Equation) for I' (see Remark

o]
(e o
o e

(®)

which is supplemented by the SDE versions of (1) and (2),
all of which should be interpreted as stochastic differential
equations of the Itd type. Here, as in [9], the notation q*
represents the vector q rotated counter-clockwise in the plane
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Fig. 2. Pursuit with noisy sensory measurements available to the pursuer:
(a) pursuer and evader trajectories, (b) the corresponding distance function
I' as a function of time. (Figure from [9].)

by an angle 7/2. Substituting (7) into (8) gives (c.f., [9])
|r|] < r .L)Z
— . dt
ENEANCE
rL)] (v — (%p - Xe) )V uedt.
€))

r = - | = vl x) -

||
N 1 { 1 (r
£ | [#? \[r]
Noting that
1 ro . 2 rooi\° 9
(D) =i (D) Zaor2 o)
22\ |r| r| [r]
and that 1 — T'2 > 0, we conclude that

dl' < —(1—1I?) L (1= v xe)) wdt
E(/I-T)

Futhermore, as in the deterministic analysis in [9], we have
the following inequalities:

(v — (xp - %))V 2ue|dt. (11)

[xp - Xe| <1, and 1 —v < |f| <1+, (12)
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so that
1—v 14+v
dl < —(1-T? ——— | dt
< 0= (555) - 5]
v (1+v)
"7 (\/1 — r?) e dt. (13)
(I—-v)?
For 1 > 0, we can define constants rg > 0 and ¢y > 0 such
that 4 1+
v v
() (),
1—v To
and thus

1 1
uZ( +V> <+V+CO), Ve[ =7ro.  (15)

1—v |r|
We thus have
2(1
dr < —(1—r2)codt+”(1( +)”2) (VI=T2) Juclar, (16)
-V
for all |r| > ro.
B. Bounds for E[T]

The next step is to take expected values of both sides of
(16), which yields
d v (1+v

ZE[l] < —cE [1-T%] + (1_y)2)E [Juel V1= Fj ,)
7

provided |r| > ro. By the Cauchy-Schwartz Inequality,

B [[uelvV1=T7]| < VETLZIVET - T7,

from which it follows that

%E[F] <—E[1-T*]+avVE[1-T1?,

provided |r| > rg. Here we’ve assumed that u. has a
bounded second moment (i.e. F[u?] < wu?,, for some
constant 4, > 0) and we’ve defined

v2(1+v)
(1—-w)?
We can now show that, given 0 < € << 1, we can
choose ¢y (and hence p) sufficiently large so as to ensure
that dE[I']/dt < 0 for E[1 —T?] > € (provided |r| > r¢). In
particular, choose ¢y > c1/+/€. Then (19) becomes

d 9 C1
ZE < —E[1-17] <c0 - E[1—1“2]>

(18)

19)

Cc1 = Umaz > 0. (20)

IN

C
< -E[1-17 <c0 - \/1%>
< -E[1-T%]c
< —e€, ey

where co = ¢g — ¢1/+/€ > 0, and provided |r| > ro. Now,

(21) can be integrated with respect to time to give
E[l] < —caet + E[Ty], (22)

as long as E[1 — I'?] > ¢, where I'y = I'(0), and provided
|I'| > Tp.
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Because the initial positions |r,(0)| and |r.(0)| are as-
sumed to be deterministic (even when u,. is stochastic), it
follows that |r(0)| is deterministic. For ro < |r(0)|, and
using

r(®)] = r(0)] = (L +w)t, (23)
we can conclude that the interval [0,T'), where
r(0)| = 7o
T'=—""F"——>0 24
110 >0, (24

is an interval of time over which we can guarantee that |r| >
ro (regardless of the sample path of u.).

From the form of (22), it is clear that by choosing cs
sufficiently large, E[I'] can be driven to an arbitrary negative
value at time 7, but for the fact that (22) is only valid for
E[1 —T?] > e. Indeed, for any > 0 and

1+ E[T]

2
T uE (25)

Co >
by a contradiction argument, E[1 — I'?(¢;)] < e must hold
for some ¢1 € [0, 7).

C. Statement of result

Analogously to [9], we define a notion of (finite-time) “ac-
cessibility” of the motion camouflage state for the stochastic
setting:

Definition 1: Given the system (1) - (2), interpreted as SDEs
driven by random processes u, and u. having (piecewise)
continuous sample paths, we say that “motion camouflage is
accessible in the mean in finite time” if for any € > 0 there
exists a time #; such that E[1 — I'?(t;)] <e.

Proposition 1: Consider the system (1) - (2), with control
law (7), and I' defined by (6), with the following hypotheses:

(Al) 0 < v <1 (and v is constant),
(A2) wu, is a stochastic process with piecewise continuous

sample paths and bounded first and second moments
(i.e. 4 constant 0 < Upqer < o0 such that V& > 0,
BluZ] < u},4, and [Eluc]| < tmaq),

max

(A3) wu, is of a form such that the matrix X = [z, v.]

evolves on SO(2),

(A4) E[1—T3] > 0, where I'y = T'(0), and
(AS) |r(0)] > 0.

Then motion camouflage is accessible in the mean in finite
time using high-gain feedback (i.e., by choosing p > 0
sufficiently large.)

Proof: The proof is along the lines of the proof of Proposi-
tion 3.3 in [9] for the deterministic system.

Without loss of generality, we may assume that E[1 —
I

Choose 19 > 0 such that 7y < |r(0)]. Choose ¢y > 0
sufficiently large so as to satisfy

o> (i om) (F )+ @9
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where 1 > 0, and choose c¢( as

()

Then defining p according to (14) ensures that E[1
I'%(t1)] < e for some t; € [0,T), where T is given by
24). 0O

co=c2+— 27)

Remark 1: Definition 1 above does not distinguish between
motion camouflage with decreasing baseline distance (i.e.,
I' = —1) and motion camouflage with increasing baseline
distance (i.e., I' = +1). By contrast, the definition of finite-
time accessibility of motion camouflage given in [9] deals
only with decreasing baseline distance.

Remark 2: Assumption (A3) equates to ensuring that the
associated vector equation evolves on a circle. This is dis-
cussed in the following section.

V. ADMISSIBLE STOCHASTIC CONTROLS

In considering the possible families of stochastic processes
that could serve as controls for the evader, we can only
select such controls that will cause the “rotation matrix”
X = [ze Y] to evolve on SO(2), the special orthogonal
group in two dimensions. For a stochastic u., (2) provides
the stochastic differential equation

dX, = X, Au.dt, (28)
where A is the skew-symmetric matrix defined by

A 0 —v

() -

Let 2y € R? and define x; by xtT = xoTXt. Then we have

dxt =5 T Auedt = dzy = AT zpudt. (30)

It can be shown (see, e.g., [10]) that X; evolves on SO(2)
if and only if (30) evolves on a circle.

Proposition 2: Let the stochastic evader control u. be
defined as follows:

dz = a(z,t)dt + B(z,t)dW, z(0) = z,
Ue = 2,

€2y

where z is a scalar stochastic process, W(-) is standard
Brownian motion, o : Rx [0,00) — R and 3 : Rx [0, 00) —
R (and suitable technical hypotheses are met). Then (28)
evolves on SO(2).

Proof: Grouping (30) and (31) and dropping the time sub-
scripts for simplicity, we have

2] [0 o [y v

(33)

WePI22.8

Then (32) becomes
dy = f(y)dt + g(y)dW. (34)

Letting ¢(y) = 272 and using Ito’s rule for differentiating,
we have

d(x’z) = dip(y)
= %f+(;; f+% (a ?ng )}dt
+ (G o) aw
=[5 ] L ]

([0 o0 )
5Ly o
= 22T ATz zdt

=0, (35)

where the last step follows from the skew-symmetry of AT,
Equation (35) implies that 2o = xga:o for all times £ > 0
(i.e., (30) evolves on a circle), and therefore (28) evolves on

SO(2). O

Remark 3: A similar result can be proved for counter-driven
stochastic controls of the form

a(z,t)dt+ > Bi(z,t)dN;, 2(0) = 2,

i=1

dz =

Ue = 2, (36)
where N;, © = 1,2,...,m are Poisson counters with rates
A;. (Follow the previous proof and use It6’s rule for jump
processes.) [J

We note the following specific possibilities for stochastic
controls:

(a) Brownian motion. Letting o(z,t) = 0 and 5(z,t) =1 in
(31) results in

dz =dW, z(0) =zp, ue =2, (37)
i.e., uc(-) = W(-). In this case, the steering control would
be governed by sample paths of a Brownian motion process.
However, this control does not satisfy assumption (A2) of
Proposition 1 and is therefore not admissible.

(b) Brownian motion with viscous damping. Let a(z,t) =
—dz and ((z,t) = o for constants § > 0 and o € R. Then
(31) becomes

dz = =dzdt + odW, z(0) = z0, ue = 2, (38)

which is better known as the Langevin equation. This control
satisfies both (A2) and (A3) and is therefore admissible.
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(¢) “Run-and-tumble” (bacterial chemotaxis). In (36) let
a(z,t) = 0 and define the Poisson counter rates and
coefficients as follows:

Bi(z,t) = %z(z -1,

Ba(z,t) = —%z(z+ 1),
53(27t) = (22 - ]-)v
t)

ﬂ4(737 = 7(22 - 1)7
)\1 = A2 - )\Ha
A3 = Ay = AL. (39)
Then (36) becomes
1 1
+(2% = 1)dN3 — (2% — 1)dNy, 2(0) = 20,
Ue = %, (40)

and u. is a continuous time, finite state (CTFS) process
taking values in the set {—1,0,1}. Hence u,. satisfies (A2)
and (A3) and is admissible as a stochastic control for the
evader. We can approximate bacterial chemotaxis, the “run-
and-tumble” control used by certain types of bacteria to move
towards food sources, by choosing Ay >> M. Under this
open-loop control, the evader will move primarily in straight
paths (u. = 0), making occasional random short-duration
turns whenever Poisson counter N3 or N4 fires. This could
also be implemented as a closed-loop control by feeding state
information (such as range to the pursuer) back to the counter
rates Ay and .

Remark 4: Note that the control u.dt = dw (i.e., ue ~
“white noise”) is not a permissible control for the evader,
since a calculation similar to (35) yields

d(zTz) = 2T AAT zdt = V22T { (1) (1) ] xdt, 41
which is not necessarily zero, and therefore X = [z, y.]

will not evolve on SO(2). O

Remark 5: Under assumptions (A2) and (A3) referred to
above (we are specifically interested in u. processes such
as (38) and (40)), it follows that for each path of wu,., the
random differential equations (1),(2) with control (7), have
well-defined local pathwise solutions away from collisional
states r, = r.. Applying Ito’s rule to the ensemble process
(1),(2),(7) gives us (8).

VI. SIMULATION RESULTS

The following simulation results demonstrate the effective-
ness of the pursuit law (7) against an evader using a “run-
and-tumble” steering control as described in the previous
section, confirming the analytical results presented in Section
IV. Each simulation is based on the same parameters but
differs by the ratio of the Poisson counter rates Ay, and Ap.
(Note also that each simulation was run for approximately
250 time units in steps of .1 time units, and the ratio of
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Fig. 3. (a) Evader trajectory with counter-driven “run-and-tumble” steering
control (dashed dark line), and the corresponding pursuer trajectory (solid
dark line) evolving according to (1) with control given by (7). In this case,
A = 40\ (b) The corresponding cost function I'(¢) given by (6), plotted
as a function of time. The lighter dashed lines correspond to a small value
of 1 while the darker solid lines correspond to a value of p which is three
times larger. (c) The transient behavior of I'(¢) as represented by an initial
time interval 1/25th the duration of that displayed in (b). The darker line
corresponds to the higher value of p.
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Fig. 4. (a) Pursuer and evader trajectories for a “run-and-tumble” evader
steering control with Ay = 20Ar. (b) The corresponding cost function
I'(t) given by (6), plotted as a function of time. (Note that the transient
behavior of I'(¢) in this simulation was identical to that from figure 3 and
was therefore omitted.)

evader’s speed to pursuer’s speed was fixed at v = .9.)
Figure 3(a) shows the pursuer and evader trajectories for
a simulation in which the ratio between the counter rates
is very large (A = 40Ar) and therefore the evader makes
fewer maneuvers. (The lighter lines connecting the pursuer
and evader at regular time intervals indicate the evolution
of the baseline vector r. If the system (1),(2) is in a state
of motion camouflage, these lines will be parallel.) Figures
3(b) and 3(c) show the complete and transient behavior,
respectively, of the cost function I'(¢) given by (6). (Each
graph shows the results for both a smaller pursuit feedback
gain p as well as the results for a gain three times larger.)
Note that the cost function is driven to the desired value
of -1 (indicating attainment of motion camouflage) with
intermittent spikes corresponding to momentary deviations
from the motion camouflage state. These spikes correspond
to time instances when the evader executes an abrupt turn.
Figures 4 and 5 show results for increasingly larger values
of A\p with a fixed Ay (i.e. higher probability of evader
maneuvering.) As demonstrated in figure 5(a), increased
evader maneuvering induces more frequent steering require-
ments for the pursuer, indicating that, while such an evasive
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Fig. 5. (a) Pursuer and evader trajectories for a “run-and-tumble” evader
steering control with Agy = 6.67A 1. (b) The corresponding cost function
I'(t) given by (6). (c) The initial behavior of I'(¢) over 1/25th of the
simulation.
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control may not prevent capture, it may introduce a high
steering/attention cost on the pursuer. Note from figure 5(b)
that the highly erratic evader steering control produced by
large values of Ay (i.e. smaller ratios of Ay to Ap) results
in frequent deviations from motion camouflage. Figure 5(c)
displays the initial transient behavior of I'(¢). In the case of
the larger value of p, the initial behavior of I'(¢) is similar
to that of figure 3(c) since the pursuer is able to maneuver
into a motion camouflage state prior to the evader’s first
course change. For the smaller value of y, the first evader
maneuver occurs while I'(¢) is still much larger than -1,
thereby delaying convergence to the motion camouflage state.

VII. DIRECTIONS FOR FUTURE WORK

In both the deterministic analysis of motion camouflage
in [9], [13] and in the stochastic analysis presented here, the
speeds of both the pursuer and evader have been constrained
to be deterministic (though possibly varying in [13]), with
bounds to ensure that the evader’s speed is strictly less than
that of the pursuer. Our investigation of the effects of stochas-
tic evader behavior could therefore be extended to permit
stochastic variation of speed, prompting several interesting
questions. While the current work has demonstrated that
a pursuer can always attain a state of motion camouflage
if the evader’s speed is deterministic and slower than the
pursuer’s, it could also be asked whether the result will still
hold if the evader’s speed is slower only on average or if the
evader’s speed is governed by a stochastic process with a
particular mean function. Additionally, in our discussion of
motion camouflage in both the deterministic and stochastic
settings, we have only permitted the evader to use an
open-loop strategy rather than a feedback strategy (whereas
the pursuer uses a feedback strategy). In the language of
biologists, such engagements would more properly be called
“pursuer-pursuee” engagements, rather than pursuer-evader
engagements. The problem could be reformulated in the
context of a differential game (as described in [6], [7])
in which the pursuer would adopt a strategy to intercept
the evader (or maximize stealth), and the evader would
adopt a strategy to elude the pursuer (or maximize pursuer
“visibility””). These types of feedback strategies could be
implemented in the stochastic setting by using feedback to
regulate parameters of the stochastic process (e.g. varying the
rates of the evader’s Poisson counters as a function of pursuer
range.) In the context of this type of differential game, a
family of varying pay-off functions and control constraints
could be used to explore possible connections to behaviors
observed in biology. The run-and-tumble motion of bacteria
and the skittish darting of fish may be consistent with such
a formulation.
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