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Enhanced Bee Swarm Optimization Algorithm for
Dynamic Economic Dispatch

Taher Niknam and Faranak Golestaneh

Abstract—This paper proposes an enhanced bee swarm op-
timization method to solve the dynamic economic dispatch
problem of thermal units considering the valve-point effects,
ramp-rate limits, and the transmission power losses. The bee
swarm optimization algorithm unlike most of the population-
based algorithms employs different moving patterns to search the
feasible solution space. This property makes an effective balance
between exploration and exploitation. Different modifications in
moving patterns of the bee swarm optimization method are
proposed to search the feasible space more effectively. The
efficiency of the method is validated using three test systems
with 10, 30, and 60 units, including 240, 720, and 1440 design
variables. The latter can be considered as a large-scale power
system. The results are compared with other reported works in
this area and found to be superior.

Index Terms—Dynamic economic dispatch (DED), enhanced
bee swarm optimization (EBSO), ramp-rate limits, valve-point
effects.

Nomenclature

Indices
i Thermal generating units (TGU) index.
t Time interval (hour) index.
k Iteration index of enhanced bee swarm

optimization (EBSO).
v Experienced forager bee index.
h Onlooker bee index.
q Scout bee index.
j Bees index.
Constants
N Number of TGUs.
NT Number of time intervals.
ai, bi, ci, di, ei, hi Cost coefficients of the ith TGU.
Bi,j Loss coefficients between ith and jth

generators (MW−1).
pi max, pi min Maximum and minimum power output of

the ith TGU, respectively (MW).
URi Ramp-up rate of the ith TGU (MW/h).
DRi Ramp-down rate of the ith TGU (MW/h).
pt

i max, p
t
i min Maximum and minimum power output of

the ith TGU at time t, respectively (MW).
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n(ζ) Number of the experienced forager bees.
Itermax Maximum iteration number.
Iter Current iteration.
Variables
pt

i Generation output of the ith TGU at time
t (MW).

Pt
D Load demand at time t (MW).

Pt
Loss The system total real power losses at time

t (MW).
F (P) Total fuel cost of generation of all TGUs

through dispatch periods ($).
fi(pt

i) Total fuel cost of generation of ith TGU
at time t ($).

P(β, j)t Position of the jth bee in the set of β at
time t.

P(ζ, v)t Position of the vth bee in the set of ζ at
time t.

P(χ, h)t Position of the hth bee in the set of χ at
time t.

P (ϑ, q)t Position of the qth bee in set ϑ at time t.
wb Cognitive weight factor.
wg Social weight factor.
wbmin, wbmax Minimum and maximum values of the

cognitive weight factors, respectively.
wgmin, wgmax Minimum and maximum values of the

social weight factors, respectively.
r Random number with uniform

distribution between 0 and 1.
Sets
ϑ Scout bees.
χ Onlooker bees.
ζ Forager bees.
β Total number of the bees.

I. Introduction

DYNAMIC ECONOMIC dispatch (DED) is one of the
major optimization issues in power system operations.

Its objective is to allocate the forecasted load demand over a
certain period of time among available generators in the best
economical manner, while all physical and operational con-
straints are satisfied. Considering different constraints for the
purpose of more precise modeling, the DED shows nonconvex
characteristics [1], [2].

Different methods are proposed in the literature for coping
with the DED problem. Traditional methods [3] and [4] fail
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to lead to optimal solutions because of nonlinear and non-
convex characteristics of the DED problem. In addition, they
are computationally complex and may trap in local optima.
Over the past few years, research has been using heuristic
optimization methods in the DED problem [5]. Although these
methods impose no restriction on the problem formulation,
they are incapable to guarantee achieving global optimal
solution. The main problem of these methods is the “curse-
of-dimensionality,” which leads to high computational cost.

More recent methods are hybrid methods. In this regard,
evolutionary programming (EP) and particle swarm opti-
mization (PSO) were combined with sequential quadratic
programming (SQP) in [6]. Combining seeker optimization
algorithm and SQP was introduced in [7]. However, regula-
tion of the control parameters of these hybrid methods is a
challenging and complicated task, so modified optimization
algorithms such as modified differential evolution [2], adaptive
hybrid differential evolution (AHDE) [8], improved chaotic
PSO (ICPSO) [9], and quantum genetic algorithm [10] were
developed.

The bee swarm optimization (BSO) algorithm is a
population-based optimization technique, which is inspired
by foraging behavior of the honey bees. To the best of our
knowledge, a few algorithms have been developed based on
this idea for numerical optimization. Artificial bee colony and
virtual bee algorithm are two examples [11], [12]. These types
of algorithms have been proved to have better performance
compared to the other population-based algorithms, such as the
ant colony optimization algorithm, the PSO, and the genetic
algorithm (GA), for solving numerical optimization problems
[11]–[13]. In most of the optimization algorithms, all individ-
uals in the population use a homologous pattern to search the
space and update their positions. Methods that use only one
moving pattern may ignore regions, which possibly contain
candidate optima. In order to solve this problem, it is essential
to employ algorithms, which provide different moving patterns
such as the BSO algorithm. Different behaviors of the bees
in the BSO set up effective balancing mechanism between
exploration and exploitation.

In this paper, an EBSO algorithm is proposed to solve the
DED problem considering the ramp-rate limits, the valve-
point effects, and the transmission power losses. The DED
as a complex, nonconvex, high dimensional and extremely
constrained problem is considered as a benchmark for testing
effectively and applicability of the proposed EBSO algorithm.

Despite the mentioned advantages of the BSO, the original
BSO suffers from premature convergence in a high dimen-
sional complex problem like the DED. Therefore, in this paper,
several valuable enhancements to the BSO are developed to
improve search capability of the BSO and enhance calculation
speed. These modifications were made to design a more
powerful optimization technique in comparison with the other
population-based techniques, such as the GA, PSO, and the
differential evolution (DE).

The EBSO algorithm uses three types of bees to find
the optimal solution of the DED problem. Each type of
the bees employs a different moving pattern. Accordingly,
the feasible region will be searched more effectively. The

EBSO algorithm uses a set of approaches, including two novel
moving patterns, a reformation technique, repulsion factor, and
nonlinear adaptive weights. In addition, constraint-handling
schemes are offered to manage equality constraints effectively
without enforcing any restrictions.

The proposed EBSO is tested on two popular test systems
implemented in much research in the area, including 10-unit
test system and 30-unit large-scale power system. The 10-unit
test system is studied under two cases by considering and
neglecting transmission power losses. In addition, to validate
the applicability of the proposed method for high dimensional
optimization problems, a 60-unit power system including 1440
design variables is considered. The results are compared with
the most recently published works, which solved the DED
problem. The results confirm the superiority and effectiveness
of the EBSO algorithm over the previous ones in solving the
DED problem.

The remainder of this paper is organized as follows. Sec-
tion II deals with the mathematical formulation of the DED
problem. The proposed EBSO algorithm for the DED problem
is described in Section III. The implementation of the EBSO
algorithm to solve the DED problem is presented in Section
IV. The feasibility and efficiency of the proposed method
are assessed on three test systems in Section V. This paper
concludes in Section VI.

II. Mathematical Description

A. Objective Function

Minimize F (P) =
T∑

t=1

N∑
i=1

fi(p
t
i) (1)

where P =
[

P1 P2 . . . PNT
]

and Pt =[
pt

1 pt
2 . . . pt

N

]T
.

The above fuel cost function is comprised of two terms: the
smooth quadratic function and the absolute value of sinusoidal
function of valve-point effects as follows:

fi(pt
i) = ai + bip

t
i + ci(pt

i)
2

+
∣∣ei × sin(hi × (pi min − (pt

i)))
∣∣. (2)

B. Constraint

The DED optimization problem is subject to the following
constraints:

N∑
i=1

pt
i = Pt

D + Pt
Loss t = 1, 2, . . . , NT (3)

Pt
Loss =

N∑
i=1

N∑
j=1

pt
iB

t
ijp

t
j t = 1, 2, . . . , NT (4)

pi min ≤ pt
i ≤ pi max i = 1, 2, . . . , N t = 1, 2, . . . , NT (5)

pt
i − pt−1

i ≤ URi i = 1, 2, . . . , N t = 1, 2, . . . , NT (6)

pt−1
i − pt

i ≤ DRi i = 1, 2, . . . , N t = 1, 2, . . . , NT. (7)
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Constraint (3) represents the power balance equation in each
period. Using the approximation based on the B-coefficients,
transmission network losses are expressed in (4). Also, gener-
ation limits are set in (5). Finally, (6) and (7) impose up–down
ramp rate limits, respectively.

III. Enhanced Bee Swarm Optimization Algorithm

In this section, the proposed EBSO algorithm is presented.

A. Overview of the Standard BSO

The EBSO algorithm includes three types of bees called
experienced forager, onlooker, and scout. These bees fly in
N × NT -dimensional space to find optimal solution. In the
EBSO, each set of the bees has a distinct flying pattern. Few
numbers of the bees, which have the worst fitness values,
are considered as the scout bees. Fitness values in the EBSO
represent the quality of the source foods found by the bees.
The remaining bees partitioned equally into onlookers and ex-
perienced foragers. The first half of these bees associated with
better fitness are chosen as the experienced foragers and the
rest are chosen as the onlookers. At the end of each iteration,
the bees are classified to the experienced forager, onlooker,
and scout based on their fitness values. The percentage of the
scout, onlooker, and forager bees are defined manually and do
not change dynamically. The position of each bee indicates a
solution represented by

P(β, j)t =
[
p1(β, j)t , p2(β, j)t , . . . , pN (β, j)t

]T
. (8)

B. Experienced Forager Bee

In the previous works, which are based on the behavior of
the bees, a hard restriction exists on the flying pattern of bees
(e.g., the forager bees fly only toward the elite bee) [11]–
[13]. A different moving pattern is used in [14] which does
not work satisfactorily in problems with several local optima.
These methods may cause the premature convergence because
of using the information achieved by the swarm imperfectly.
Therefore, the EBSO algorithm employs two different moving
patterns for the experienced forager bees. In this method, the
experienced forager bees are sorted based on their fitness
values and partitioned into two equal parts. The new food
sources are achieved as follows.

1) The better part of the experienced forager bees fly
considering social and cognitive information achieved by
the swarm. Using this method helps to balance between
exploration and exploitation. Thus, the global optimum
can be found with the higher probability. Throughout
the iterated procedure, each experienced forager bee
remembers its own best position associated with the best
personal fitness value, which is defined by

P(ζ, v)tbest =
[
p1(ζ, v)tbest, p2(ζ, v)tbest, . . . , pN (ζ, v)tbest

]T
.

(9)
The food source with the best fitness value, which is
discovered by the swarm so far, is denoted by Gbest and

the associated bee is called the elite bee. The new food
source of the vth experienced forager bee is calculated
as follows:

P(ζ, v)tnew=P(ζ, v)told+wb × rb×(P(ζ, v)tbest − P(ζ, v)told)
+wg × rg × (Gk,t

best−P(ζ, v)told)
(10)

where rg and rb are two random numbers between 0
and 1; also, wg and wb determine the importance of
the social or cognitive information for each iteration,
respectively.

2) In the aforesaid method for updating the experienced
forager bees, each bee uses only its own information and
the elite bee information, so good information obtained
by the other bees may be neglected. To overcome this
imperfection, in this paper, updating the position of
the other half of the experienced forager bees is done
by selecting two experienced forager bees randomly as
m1 �= m2 �= v. The EBSO algorithm employs this pattern
movement to increase the diversity of the solutions to
some extent and help to escape from local optima. The
new source food for the vth experienced forager bees
is obtained as follows:

P(ζ, v)tnew =

⎧⎪⎪⎨
⎪⎪⎩

if F (P(ζ, m1)) ≤ F (P(ζ, m2))
P(ζ, v)told + r × (P(ζ, m1)t − P(ζ, m2)t)
else
P(ζ, v)told + r × (P(ζ, m2)t − P(ζ, m1)t)

(11)
where F (P(ζ, m)) is the fitness value of the source food,
which is discovered by the mth experienced forager bee.

C. Onlooker Bees

The onlooker bees use the information obtained by the
experienced forager bees to modify their flying trajectories.
At each iteration of the algorithm, the experienced forager
bees advertise the position and the nectar of the food sources,
which are discovered by them, in the dance floor. An onlooker
bee evaluates these food sources and their nectar values.
Subsequently, the onlooker bee uses a probabilistic approach
to select one of the source foods advertised in the dance
area and follow the bee which found it. This selected ex-
perienced forager bee is called the elite bee and represented
by P(χ, h)te =

[
p1(χ, h)te, p2(χ, h)te, . . . , pN (χ, h)te

]T
with the

probability of probv. The better fitness value of the source
food causes the larger probability and encourages more on-
looker bees to follow its explorer. The probability of the vth
experienced forager bee in the set ζ can be defined as follows:

probv =
1/(1 + F (P(ζ, v)))

n(ζ)∑
C=1

(1/(1 + F (P(ζ, C))))

(12)

where F (P(ζ, v)) is the fitness value of the source food,
which is discovered by the vth experienced forager bee.
After calculating the probability of the food sources, the
onlooker bees employ the roulette wheel mechanism to choose
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their interesting elite bees. Finally, the onlookers update their
position as follows:

P(χ, h)tnew = P(χ, h)told +r×wg×(P(χ, h)te−P(χ, h)told) (13)

where P(χ, h)te represents the position of the elite bee of
the hth onlooker in set χ. P(χ, h)told and P(χ, h)tnew are the
current position and the new position of the hth onlooker bee,
respectively.

D. Scout Bees

The BSO-RP in [14] uses a stochastic pattern to find new
solutions and replaces the food sources with poor qualities. In
this method, the scout bee walks randomly in a region with
radius τ, finds some new solutions, and chooses the best one
as its new source food. Finding just one new solution, the
algorithm fails to overcome trapping in local optima. On the
other hand, as the number of new source food that a scout bee
finds in radius τ increases, the computational time increases.
In this paper, instead of the scout bees, a reformation technique
is devised to improve the diversity of solutions. Section III-
E explains the proposed reformation technique. The EBSO
algorithm proposes a moving pattern for scout bees which
tries to improve the quality of solutions found by them. This
technique uses the best position found by the swarm up to now
(Gbest) and the mean value of the population in the previous
iteration (M) as follows:

P(ϑ, q)tnew = P(ϑ, q)told + r × (Gt
best − l × Mt) (14)

where l is the rate of obedience and determined randomly with
equal probability as l = round[1 + rand(0, 1)]. P(ϑ, q)told and
P(ϑ, q)tnew are the current position and the new position of the
qth scout bee, respectively.

E. Techniques to Alleviate Stagnation

Despite the above-mentioned strategies, premature conver-
gence and stagnation may occur. The following techniques are
employed in the EBSO algorithm to alleviate stagnation and
make the algorithm more powerful in the sense that it finds
the global optimum in a shorter time.

1) Reformation: To improve the diversity of the solutions
the EBSO algorithm uses a reformation technique. In the pro-
posed reformation technique, new positions are produced for
half of the bees. These bees are selected randomly. In order to
mutate each selected position, P(β, j)k, three bees m1, m2, and
m3 are selected randomly as m1 �= m2 �= m3 �= j. A mutant po-
sition p(β, j)k,tmut = [p1(β, j)k,tmut, p2(β, j)k,tmut, . . . , pN (β, j)k,tmut]

T

is created as follows:

P(β, j)k,tmut = P(β, m1)k,t +r×(P(β, m2)k,t −P(β, m3)k,t). (15)

By the following scheme, the trial vector is obtained:

pθ(β, j)k,ttrial =

{
pθ(β, j)k,tmut, if (r ≤ 0.5)
pθ(β, j)k,t, else

(16)

where θ = 1, 2, . . . , N.
Among the randomly selected target vector, P(β, j)k, and the

trial vector, the one with the better fitness value is selected as
the member of the next generation.

2) Nonlinear Adaptive Weight Factors: In previous works
associated with the BSO algorithm, linear adaptive weight
factors were used [14]. However, the nonlinear weight factors
are more effective for balancing between local and global
search in problems such as the DED, where inputs (i.e., system
load) dynamically change over time. In this paper, wb and wg

are updated using the following nonlinear approach. It is based
on the nonlinear sinusoidal function y as follows:

y = sin

(
π

s
× Itermax − Iter

Itermax

)
(17)

where s is a constant value within the range 0 = s = 10.
Different values of s present a wide range of performance of
the weight factors from approximately linear characteristics
for larger values of s to the periodic ones with several minima
and maxima for smaller values of s as follows:

wb =
y − ymin

ymax − ymin
(wb max − wb min) + wb min (18)

wg =
y − ymin

ymax − ymin
(wg min − wg max) + wg max (19)

where ymin and ymax are the minimum and maximum values
of the sinusoidal function, respectively. s is considered to be
2 in this paper. Figs. 1 and 2 show the behavior of wb and
wg, respectively, for different values of the s. From these
two figures, nonlinear weight factors (e.g., s = 2) more than
approximately linear weight factors (e.g., s = 8) encourage
the algorithm to concentrate on the exploration at the initial
iterations and exploitation at the final iterations.

3) Repulsion Factor: The bees in the BSO algorithm
move toward the experienced forager bees using different
approaches. This procedure causes to fly over some parts of
the search space, which may include profitable information
and has been ignored by the population. Therefore, repulsion
techniques are used in this research to improve the diversity
of the solutions.

This is done by persuading some of the individuals to move
in opposite directions of their elites. The modified moving
patterns of the experienced forager, onlooker, and scout bees
are defined as follows:

P(ζ, v)tnew = P(ζ, v)told

+sign ×
(

wb × rb × (P(ζ, v)tbest − P(ζ, v)told)
+wg × rg × (Gt

best − p(ζ, v)told)

)

(20)

P(χ, i)tnew = P(χ, i)told + sign × (
wg × (P(χ, i)te − P(χ, i)told)

)
(21)

P(ϑ, j)tnew = P(ϑ, j)told + sign × (
r × (Gt

best − l × Mt)
)

(22)

where sign is defined as follows:

sign =

{
1, if (r ≤ pr)
−1, else

(23)

where pr has a constant value, which controls the repulsion
rank in the swarm and is considered 0.8 in this paper.
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Fig. 1. Variations of wb versus different iterations.

Fig. 2. Variations of wg versus different iterations.

IV. Solution Methodology

The procedure for implementing the DED optimization
algorithm can be summarized in the following steps.
Step 1) Randomly initialize the initial positions of the bees

in the feasible range. The position of the individuals
for each hour is restricted by the ramp-rate limits as
follows:

pt+1
i min = max

{
pi min, pi(β, j)t − DRi

}
pt+1

i max = min
{

pi max, pi(β, j)t + URi

}
.

(24)

Step 2) The amount of power balance violation is computed
for each of the bees by

PD =
N∑
i=1

pt
i − Pt

Loss − Pt
D. (25)

a) If PD = 0, go to Step 3.
b) If PD �= 0, one of the generated units is selected
randomly and PD is subtracted from it. If allocated
capacity of the selected unit violates its constraint
(24), then the position of the individual is fixed to the
boundary values which are determined by (24). Go to
Step 2. The algorithm guarantees that different units
will be selected to compensate power mismatch. In
each hour, if equality constraint cannot be balanced,
the algorithm returns to previous hours and rearranges
them.

Step 3) The individuals are sorted based on their fitness
values, then P(ζ, j)best for each forager bee, the elite
bees for each onlooker and Gbest are determined.

Step 4) Modify the position of the particles by (11), (20)–(22)
considering (24) and Step 2.

Step 5) Apply the reformation technique and select the fi-
nal discovered food sources in the current iteration

as described in Section III-E considering (24) and
Step 2.

Step 6) Update weight factors using the nonlinear approach
in Section III-E.

Step 7) Go to Step 3 until the current iteration number
reaches the prespecified maximum iteration number.

V. Results and Discussions

In order to verify the effectiveness of the proposed algorithm
for practical applications, it is applied to four test systems
for solving the DED problem. In all cases, the ramp-rate
limits and the valve-point effects are considered. The dispatch
horizon NT is selected as a day with 24 h. The generator
and the power balance constraints for each hour make the
DED problem a high dimensional optimization problem with
several local optima. Therefore, the methods used for solving
the DED problem should be able to escape these local points
while satisfying all constraints. All the simulations are carried
out by MATLAB 7.01 on a Pentium-IV, 1.8 GHz personal
computer with 2 GB RAM. Maximum iteration number is
specified as 700 for all tests. The results are presented in
the following subsections. The results are compared with the
well-known works done in the area. It is worth noting that
the other methods are not implemented in this paper and
the results mentioned as their best, average and worst results
and the actual simulation time are the reported values by
the cited references in this paper. In addition, to evaluate the
computational efficiency fairly, the equalized CPU time (keq×
actual CPU time) is considered as a performance measure. The
equalizing factor (keq) is the ratio of actual CPU speed (GHz)
to the speed of CPU (GHz) in which the proposed algorithms
are carried out. The assumed case studies are as follows:
Case 1) a 10-unit system by neglecting transmission losses

[18] including 24 × 10 design variables;
Case 2) a 10-unit system considering transmission losses [6]

including 24 × 10 design variables;
Case 3) a 30-unit power system including 24 × 30 design

variables obtained by tripling the number of units in
case system 1;

Case 4) a 60-unit power system including 24 × 60 design
variables obtained by sextupling the number of units
in case system 1.

A. Parameter Settings for Simulation

In order to determine the best control parameters of the
EBSO algorithm, different combinations of these parameters
are considered. Control parameters of the EBSO algorithm are
population size and the percentage of the total bees, which are
considered as the experienced forager, the onlooker, and the
scout bees. Different combinations of these parameters and
their test results are summarized in Table I for Case 1. Tests
are carried out 40 times for each combination. In order to fairly
discuss the results obtained for different parameter values,
Table II provides the comparison of the equalized CPU average
execution time, as well as the best, worst and average total fuel
cost obtained for Case 1 using the proposed algorithm and the
other recent methods reported in the literature.
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TABLE I

Influence of Parameters on EBSO Performance for Case 1

Number of Percent of onlookers = 49% Percent of onlookers = 40% Percent of onlookers = 30%
Population Percent of foragers = 49% Percent of foragers = 40% Percent of onlookers = 30%

Percent of scouts = 2% Percent of scouts = 20% Percent of scouts = 30%
Maximum
cost ($)

Minimum
cost ($)

Average
cost ($)

Standard
deviation

Mean
simulation
time (min)

Maximum
cost ($)

Minimum
cost ($)

Average
cost ($)

Standard
deviation

Mean
simulation
time (min)

Maximum
cost ($)

Minimum
cost ($)

Average
cost ($)

Standard
deviation

Mean
simulation
time (min)

50 (5 × N) 1 018 841 1 017 880 1 018 188 168 0.200 1 018 970 1 017 448 1 017 786 161 0.201 1 018 704 1 017 501 1 018 005 168 0.200
70 (7 × N) 1 018 742 1 017 747 1 018 160 164 0.205 1 017 891 1 017 147 1 017 526 147 0.205 1 017 905 1 017 377 1 017 578 162 0.205
120 (12 × N) 1 018 758 1 017 719 1 018 151 161 0.46 1 018 795 1 017 297 1 017 759 153 0.46 1 017 898 1 017 378 1 017 531 157 0.46

TABLE II

Comparison of Total Production Cost and Simulation Time for Case 1

Method Maximum Minimum Average Mean Equalized Standard
Cost ($) Cost ($) Cost ($) Simulation Deviation

Time (min)
EP-SQP [6] − 1 031 746 1 035 748 − −

MHEP-SQP [6]* − 1 028 924 1 031 179 − −
AHDE [8] − 1 020 082 1 022 474 1.466
IPSO [15]* − 1 023 807 1 026 863 0.066 1569.80

AIS [16] 10 24 973 1 021 980 10,23,156 33.795 −
DE [17] 1 027 634 1 023 432 1 026 475 0.399 −

CDE method 3 [18] 1 023 115 1 019 123 1 020 870 0.426 1310.70
ECE [19] − 1 022 271 1 023 334 0.439 −

ICPSO [10] − 1 019 072 1 020 027 0.467 493.21
Proposed EBSO 1 017 891 1 017 147 1 017 526 0.205 147.01

*Violate ramp-rate constraints in various degrees.

Tables I and II show that the EBSO with different combi-
nations of the control parameters performs better than earlier
methods in solving the DED problem. The best achieved total
cost using the EBSO is $1 017 147 for the population size of
70. The percentage of the bee population that was considered
as experienced foragers and onlookers was chosen to be 40%.

Table III provides details about the best solutions. Accord-
ing to Table I, increasing the population size beyond 70 does
not improve the results significantly. Additionally, the EBSO
when the percentage of both the experienced foragers and
onlookers = 49% do not perform as effectively as the other
combinations. Therefore, the percentage of the worst bees that
fly using scout moving pattern must be more than 2% in order
to allow the algorithm to find more optimal solutions. The
same test is done for the other cases and consequently the
following parameter setting is considered for all simulations:

1) number of population: 7 × N;
2) percentage of the experienced forager bees: 40%;
3) percentage of the onlooker bees: 40%;
4) percentage of the scout bees: 20%.

B. Effects of the Different Modifications on the EBSO
Algorithm

Several approaches are suggested in this research to im-
prove the convergence characteristics of the original BSO
to avoid premature phenomena and alleviate stagnation.
Tables IV and V show the obtained results using these ap-
proaches for Cases 1 and 4, respectively. These two tables
demonstrate that modifications on moving patterns of the bees
are unable to alleviate stagnation completely. The results show
that the proposed techniques for alleviate stagnation improve

the convergence performance of the EBSO significantly. In
addition, Fig. 3 shows the convergence characteristics of the
proposed EBSO algorithm (S1), the EBSO algorithm without
reformation (S2), and the original BSO algorithm (S3). For
the EBSO algorithm under both scenarios, the population size
and percentage of the scout bees are considered 70 and 20%,
respectively. The original BSO is considered with population
size equal to 70 and the percentage of the scout equal to 10%.
In addition, two new solutions are found around each scout
bee. As Fig. 3 demonstrates, although the number of objective
function evaluations in each iteration of the EBSO algorithm is
more than the other ones, with equal numbers of the objective
function evaluation, the EBSO algorithm obtains more optimal
solution than S1 and S2.

C. Comparative Study

1) Solution Quality: Comparison between the results
obtained by the EBSO for Cases 1–3 and other methods,
which have been reported in the literature, are summarized
in Tables II, VI, and VII. The results of the EBSO algorithm
are extracted from 40 independent runs. These tables show
that the total cost values achieved using the EBSO algorithm
for every three cases are the best among other cited methods.
Furthermore, a popular optimization software named general
algebraic modeling system (GAMS) is used to verify the
effectiveness of the proposed EBSO. The same case studies
are solved by GAMS uses linear programming to optimize
the problems.

Although GAMS is a powerful optimization tool for convex
problems, it fails to give optimal solutions for nonconvex ones.
This is because of its requirement for piecewise linearization
of nonlinear and nonconvex optimization functions, which
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TABLE III

Best Solutions Obtained by the Proposed Method for Case 1 (MW)

Hour Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit
10

Total
load

1 150 135 194.0932 60 122.8666 122.4498 129.5904 47 20 55 1036
2 150 135 268.0932 60 122.8666 122.4498 129.5904 47 20 55 1110
3 226.6257 215 309.3158 60 73 122.4681 129.5904 47 20 55 1258
4 303.2489 295 300.6952 60 73 122.4654 129.5904 47 20 55 1406
5 303.2486 312.1905 307.6308 60.0004 122.8709 122.4684 129.5904 47 20 55 1480
6 379.873 392.1905 298.9693 60 122.8861 122.4907 129.5904 47 20 55 1628
7 379.8731 396.8014 318.5473 60.0001 172.7367 122.4509 129.5904 47 20 55 1702
8 379.8727 396.7994 296.8239 105.8645 222.5995 122.4495 129.5904 47 20 55 1776
9 456.4968 396.7994 321.3026 122.7665 222.5997 122.4446 129.5904 77 20 55 1924
10 456.4968 396.7994 339.4651 172.7665 222.6238 160 129.5904 89.25788 50 55 2072
11 456.4968 396.7994 331.4322 222.7665 222.5997 160 129.5904 119.2579 52.0571 55 2146
12 456.4968 460 323.049 241.2132 222.5997 160 129.5904 120 52.0508 55 2220
13 456.4968 396.7994 318.2496 191.2132 222.5997 160 129.5904 120 22.0508 55 2072
14 456.4968 396.7994 289.8508 141.2132 222.5995 122.4498 129.5904 90 20 55 1924
15 379.8725 396.7994 302.0321 112.2107 172.7328 122.4499 129.5904 85.31211 20 55 1776
16 303.2484 396.7564 286.5656 62.2107 122.8665 122.4498 129.5904 55.31211 20 55 1554
17 226.6244 396.8014 299.6527 60 122.8662 122.4648 129.5904 47 20 55 1480
18 303.2484 396.7999 321.1772 60 172.7335 122.4506 129.5904 47 20 55 1628
19 379.8726 396.7994 297.2166 105.473 222.5977 122.4502 129.5904 47 20 55 1776
20 456.4968 460 340 121.313 222.5997 160 129.5904 77 50 55 2072
21 456.4969 396.7995 315.7452 120.7683 222.5997 160 129.5904 47 20 55 1924
22 379.8726 316.7995 313.7862 70.7683 172.7331 122.4498 129.5904 47 20 55 1628
23 303.2484 236.7995 235.0452 60 122.8665 122.4498 129.5904 47 20 55 1332
24 226.6242 222.2665 178.2025 60 122.8666 122.4498 129.5904 47 20 55 1184

TABLE IV

Comparison of EBSO on Different Cases for Case 1 (40 Runs)

Methods Maximum Minimum Average
Cost ($) Cost ($) Cost ($)

EBSO 1 017 891 1 017 147 1 017 526
EBSO without reformation 1 022 797 1 020 361 1 021 824
EBSO without nonlinear w* 1 018 195 1 017 851 1 018 089
EBSO without repulsion factor 1 018 489 1 017 954 1 018 187
Original BSO 1 037 289 1 033 254 1 035 987

∗w = (wmin−wmax)
Itermax

∗ Iter + wmax.

TABLE V

Comparison of EBSO on Different Cases for Case 4 (40 Runs)

Methods Maximum Minimum Average
Cost ($) Cost ($) Cost ($)

EBSO 6 117 320 6 113 888 6 115 637
EBSO without reformation 6 146 797 6 130 361 6 139 824
EBSO without nonlinear w∗ 6 118 195 6 113 951 6 116 989
EBSO without repulsion factor 6 119 489 6 113 954 6 118 187
Original BSO 6 159 215 6 147 237 6 154 995

∗w = (wmin−wmax)
Itermax

∗ Iter + wmax.

causes trapping in local optima. To clarify the point, Table VIII
is offered. Table VIII summarizes the best solutions archived
by different solvers of GAMS for Cases 1 and 4. Comparing
the best results of the EBSO method given in Tables II and V
and the GAMS results, the shortcoming of GAMS in solving
the nonconvex DED problem can be concluded.

In Case 3, the number of the units was tripled compared to
Case 1 in order to have a 30-unit large-scale power system.

Fig. 3. Convergence characteristics based on number of objective function
evaluations for Case 1.

Consequently, the degrees of nonconvexity, nonsmoothness,
and nonlinearity of the problem are increased significantly.
Table VII shows the ability of the suggested method to find
the optimal solution for this high dimensional DED problem.
Also, the worst solution of the EBSO algorithm for the DED
problem of Cases 1–3 is better than the best solution of the
other cited methods. Comparing the average cost obtained
by the EBSO with respect to other methods emphasizes its
better solution quality. In addition, as given in Table V, the
best solution obtained for Case 4 is $6 113 888. There are
no reported results for this case for further analysis. The
convergence characteristics of the EBSO and the original BSO
algorithms are shown in Fig. 4 for Case 3.

From Fig. 4, it is clear that the value of the cost function
converges smoothly to the optimum solution without any
sudden oscillations even for the large-scale system with several
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TABLE VI

Comparison of Total Production Cost and

Simulation Time for Case 2

Methods Maximum Minimum Average Mean Standard
Cost ($) Cost ($) Cost ($) Equalized Deviation

Simulation
Time (min)

EP [6] − 1 054 685 1 057 323 − −
EP-SQP [6] − 1 052 668 1 053 771 − −
MHEP-SQP [6] − 1 050 054 1 052 349 − −
IPSO [15] − 1 046 275 1 048 145 − −
AIS [16 ] 1 048 431 1 045 715 1 047 050 41.280 −
Proposed EBSO 1 039 272 1 038 915 1 039 188 0.22 148.02

TABLE VII

Comparison of Total Production Cost and

Simulation Time for Case 3

Method Maximum Minimum Average Mean
Cost ($) Cost ($) Cost ($) Actual

Simulation
Time (min)

EP-SQP [6] − 3 159 024 3 169 093 −
MHEP-SQP [6] − 3 151 445 3 157 438 −
CDE method 3 [18] − 3 083 930 3 090 542 −
CSAPSO [20] − 3 066 907 3 075 023 −
Proposed EBSO 3 055 944 3 054 001 3 054 697 0.95

TABLE VIII

Comparison of Best Results of GAMS for Cases 1 and 4

Optimization 10-Unit System 60-Unit System
Technique Without Losses Without Losses
BARON Infeasible Infeasible
Conopt 1 075 718 6 280 093
LGO 1 039 846 6 226 293
MINOS 1 040 469 6 229 083
MOSEK Infeasible Infeasible
SNOPT 1 035 259 6 194 804
OQNLP 1 033 617 6 188 873
PATHNLP Infeasible Infeasible
MSNLP 1 023 879 6 159 983

local optima. This feature proves the convergence reliability
of the proposed EBSO algorithm.

2) Computational Efficiency: Power mismatch between
total power generation and demand plus transmission losses
is zero (Table III).

It should be mentioned that the data in Table III are rounded
up to four decimal places. Table III confirms that the ramp-rate
limits are effectively satisfied.

In order to verify the proposed equality constraint han-
dling method in this paper, the proposed EAPSO method
is implemented employing two typical constraint handling
methods for Case 1. “Method 1” considers a dependent unit
to satisfy the equality constraint [2], while “Method 2” adds
a penalty factor to fitness function where each solution is
penalized in case of infeasibility with penalty proportional to
the extent of constraint violation [19]. The comparative results
are mentioned in Table IX.

From Tables II, VI, and IX, the EBSO algorithm is efficient
as far as computational time is concerned, so as a whole, it

Fig. 4. Convergence characteristics of the EBSO and original BSO for
30-unit system.

TABLE IX

Comparisons of Total Production Cost Employing

Constraint Handling Methods for Case 1 (40 Runs)

Method Maximum Minimum Average Maximum Mean
Cost ($) Cost ($) Cost ($) Violation Actual

Simulation
Time (min)

Method 1 [2] 1 018 509 1 017 398 1 017 994 10−10 0.2

Method 2 [19] 1 018 399 1 017 291 1 017 982 10−2 0.16

Proposed method 1 017 891 1 017 147 1 017 526 10−10 0.2

seems the EBSO algorithm is computationally more efficient
than the earlier cited methods.

3) Robustness: Similar to other evolutionary algorithms,
the EBSO uses the stochastic techniques and randomness is
an intrinsic feature of it. Therefore, the performance of these
algorithms was measured based on the results obtained from
several independent runs.

Table I shows that the EBSO algorithm is relatively robust
for different parameter combinations. Table II shows that the
EBSO method provides optimal solutions with satisfactory
standard deviation in comparison with the other cited methods.
The calculated standard deviation for Cases 3 and 4 are $294
and $541, respectively, which again confirm the robustness of
the EBSO algorithm.

For further analysis success rate is calculated for Case 1.
The success rate is defined as (Trailsuc/Trailtol) × 100 in this
paper where Trailtol is the total number of the tests carried out
and Trailsuc is the number of the successful tests to converge
to the best solution. Results of the success rate are provided
in Table X. Table X shows the BSO algorithm has satisfactory
success rate and is robust.

VI. Conclusion

This paper presented the EBSO algorithm to solve the
DED problem. The DED problem formulation, including the
system, the power losses, the valve-point effects, and the ramp-
rate limits, was considered. In the proposed framework, the
heuristic strategies were planned to efficiently handle different
operating constraints. To enhance the performance of the orig-
inal BSO, several approaches were put into practice including
two improved moving patterns, repulsion techniques for the di-
versity of the solutions, a nonlinear approach to update weight
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TABLE X

Success Rate of the EBSO for Case 1 Out of 40 Trials

Best cost ($)
Rang of the 1 017 147–1 017 831 1 017 831–1 018 131 1 018 131–1 019 131 1 019 131–1 020 131 1 020 131–1 021 131

fuel cost
Success rate 95% 5% 0 0 0

factors of the algorithm, and a powerful reformation to prevent
premature convergence. Consequently, the proposed EBSO
provided more optimal solutions with lower computational
burden compared to other heuristic optimization methods cited
in this paper. The EBSO algorithm was examined on different
test systems and its performance was compared with the other
recently developed techniques. The comparative study was
done in terms of the solution quality, computational efficiency,
and the robustness. The simulation results showed that the
proposed EBSO method not only provides more optimal
solutions for the DED problem in a proper computational time,
but also gives solutions with satisfactory standard deviation.
Moreover, the EBSO algorithm found solutions with lower
cost for DED problem in comparison with different solvers of
the GAMS. Furthermore, the effects of the different proposed
modifications on the EBSO algorithm were examined and
discussed in detail. The research work is under way in order
to incorporate security issues (e.g., maximization of static and
dynamic stability margins) and devise stochastic optimization
approach to cope with the uncertainty in available output
power of wind farms and photovoltaic units.
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